ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

Регуляция дыхания. Функциональная система кислородного снабжения организма.

Регуляция внешнего дыхания.

        Вентиляция легких осуществляется работой дыхательных мышц. Периодичность их сокращений обуславливается деятельностью дыхательного центра. Значение этого центра заключается не только в определении объема вентиляции, но и выборе наиболее экономичной частоты, глубины и формы дыхательных движений в зависимости от механических свойств легких и стенок грудной полости (их растяжимости, сопротивления воздухоносных путей току воздуха, вязких сопротивлений тканей и т.п).

       Деятельности дыхательного центра свойственна высокая степень надежности. В ее обеспечении участвуют афферентные импульсы, способствующие смене дыхательных фаз. Сокращения многих мышц и мышечных групп, участвующих в вентиляции легких, строго координированы по протеканию во времени и силе. Интенсивность возбуждения дыхательных мышц регулируется в соответствии с изменениями их длины и объема грудной клетки. Эти стороны деятельности аппарата внешнего дыхания обслуживаются рефлексами, рецептивные поля которых расположены в самом дыхательном аппарате: в легких, дыхательных мышцах, верхних дыхательных путях. Они выполняют функцию обратной связи между центрами и периферией и должны быть отнесены к собственным дыхательным рефлексам, осуществляющим саморегуляцию дыхания.

       Рассмотрим строение рефлекторных дуг этих рефлексов.

       Афферентная система легких. В 1868 г. Геринг и Брейер обнаружили, что увеличение объема легких тормозит сокращение мышц вдоха, а отсасывание воздуха из легких, наоборот, вызывает сильное сокращение инспираторных мышц. Зависимость деятельности дыхательного центра от объема легких устраняется двусторонней перерезкой блуждающих нервов или только их легочных ветвей.

       Имеется несколько видов механорецепторов в легких. Морфологи различают медленно и быстро адаптирующиеся рецепторы растяжения легких, рецепторы спадения легких, рецепторы слизистой оболочки трахеи и бронхов, рецепторы интерстициальной ткани альвеол (т.н. Ю-рецепторы легких). Роль и значение всех этих образований в регуляции дыхательных движений различна.

       Изменения объема легких у животных вызывает три сильные и постоянные реакции дыхательного центра: 1) торможение инспираторной активности при увеличении объема легких, 2) короткое инспираторное возбуждение при резком и небольшом увеличении объема и 3) увеличение частоты дыхания и силы сокращений мышц вдоха при уменьшении объема легких. Для этих рефлексов характерны системные реакции дыхательного аппарата, причем состояние мотонейронов мышц вдоха и выдоха изменяется реципрокно.

       Хотя двусторонняя ваготомия не приводит к смерти животного. но выключение импульсов от рецепторов легких существенно меняет протекание дыхательных периодов и форму дыхательных движений. Происходит увеличение амплитуды и продолжительности вдохов и выдохов, а смена дыхательных фаз нарушается и происходит за счет раздражения механорецепторов дыхательных мышц. Афферентная система легких играет важную роль в саморегуляции дыхания. являясь основой обратной связи между периферией дыхательного аппарата и центрами.

       Афферентная система дыхательных мышц. Диафрагма относительно бедна рецепторами, которые в обычных условиях не имеют существенного значения в регуляции дыхания. Зато дыхательная активность диафрагмы находится в постоянной зависимости от объема легких. При герметичной плевральной полости движения диафрагмы всегда сопровождаются раздражением механорецепторов легких, которые, по существу. заменяют собственные рецепторы диафрагмы.

       Межреберные мышцы снабжены большим количеством рецепторов типа мышечных веретен. В мышцах одного межреберного промежутка насчитывают до 100 таких образований. Возбуждение окончаний веретен изменяется при сокращении и растяжении межреберных мышц. От чувствительных окончаний веретен в спинной мозг постоянно поступает поток импульсов, который усиливается при вдохе, так как вместе с экстрафузальными мышечными волокнами при вдохе происходит сокращение и интрафузальных, причем начало сокращения последних определяется раньше, чем возбуждение альфа-мотонейронов. Активность мотонейронов мышц вдоха и выдоха изменяется строго реципрокно.

      Кроме рецепторов растяжения мышц, при дыхательных движениях происходит раздражение механорецепторов кожи грудной клетки, и рецепторов подкожных вен. Импульсы от механорецепторов грудной клетки поступают в грудные сегменты спинного мозга, восходят к диафрагмальным центрам и в головной мозг.

         Нормальный дыхательный объем обеспечивается укорочением дыхательных мышц, развивающих определенное напряжение. Дыхательный центр определяет "запрос" на укорочение дыхательных мышц через эфферентные системы мышечных веретен. Сокращение интрафузальных волокон обуславливает дополнительное сокращение экстрафузальных мышечных волокон, пропорциональное укорочению интрафузальных волокон в соответствии с запросом. При увеличении нагрузки дыхательного аппарата (увеличение сопротивления дыханию) прежнее напряжение мышц не обуславливает прежнего укорочения и необходимого изменения объема грудной полости. Но в этих условиях веретена оказываются более растянутыми, чем до нагрузки, что в порядке рефлекса растяжения автоматически вызывает увеличение напряжения мышц.

     Хеморецепторы дыхательного аппарата. Помимо механорецепторов легких и воздухоносных путей, а также проприорецепторов дыхательных мышц большую роль в регуляции дыхания играют сенсорные образования, чувствительные к химическим раздражителям, хеморецепторы. Функция последних - контроль газового состава и кислотно-щелочного баланса внутренней среды организма, в обеспечении постоянства которой дыхание принимает прямое участие.

       Интенсивность внешнего дыхания в конечном счете определяется динамикой потребления кислорода и продукцией СО2 тканями тела. Дыхательный центр продолговатого мозга поддерживает уровень легочной вентиляции прежде всего в соответствии с напряжение углекислого газа и концентрацией водородных ионов в омывающей его крови. Однако этот центр, если его изолировать от афферентных связей с периферией, не способен адекватно реагировать на уровень доставки кислорода. Именно хеморецепторы посылают в дыхательный центр сигналы о величине напряжения кислорода в крови, а также дополнительную информацию о напряжении углекислоты и активной реакции внутренней среды. Показано, что эти рецепторы чувствительны к ограничению кислородного снабжения и снижению содержания кислорода в крови независимо от того, каким путем оно происходит.

       Рецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и в каротидном синусе (место деления сонной артерии на наружную и внутреннюю). Хеморецепторы заключены в особых телах - клубочках, или гломусах, которые находятся вне сосуда и омываются кровью через специальные капилляры.

      Кроме этих рецепторов, в регуляции газового состава крови принимают участие т.н. центральные нейрорецепторные образования. Перфузия 4 мозгового желудочка животных подкисленными или насыщенными СО2 растворами вызывает гипервентиляцию. Исследования показали, что хемочувствительные области располагаются в вентролатеральной части продолговатого мозга, на глубине 2,5-3 мм от поверхности, и посылают информацию нейронам дыхательного центра.

       Благодаря функциональным свойствам артериальных хеморецепторов стимуляция их особенно эффективна при мышечной деятельности, которая, как известно, требует поддержания высокого уровня вентиляции. При этом хеморецепторы участвуют в регуляции не только МОД, но и таких параметров, как тонус бронхиальной мускулатуры и просвет воздухоносных путей, а также - путем влияния на активность межреберных мышц - на функциональную остаточную емкость и структуру дыхательного цикла.

      Аортальные хеморецепторы расположены у "ворот" всей артериальной системы, а каротидные - у "ворот" сосудистой сети головного мозга. Исключительная важность функции каротидного тела указывает на большую физиологическую значимость регуляции газового состава крови, снабжающей мозг.

      Дыхательный центр ретикулярной формации мозгового ствола осуществляет интеграцию поступающих хеморецепторных сигналов с другими афферентными и центральными влияниями. Полагают, что в результате взаимодействия механорецепторных и хеморецепторных импульсов в специализированных нейронных сетях и формируется специфический ритмический характер деятельности дыхательного центра.

        Как же устроен дыхательный центр, который осуществляет столь тонкую регуляцию дыхания организма? Мы уже несколько раз упоминали о нем, давайте теперь поговорим более подробно.

       Дыхательным центром называют совокупность нервных клеток, расположенных в разных отделах ЦНС, обеспечивающих координированную ритмическую деятельность дыхательных мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма. Некоторые группы нервных клеток являются совершенно необходимыми для ритмической деятельности дыхательных мышц. Они расположены в ретикулярной формации продолговатого мозга, составляя дыхательный центр в узком (анатомическом) смысле слова. Нарушение функции этих клеток приводит к прекращению дыхания вследствие паралича дыхательных мышц.

       Анализируя результаты перерезок, электрического раздражения и коагуляции различных участков продолговатого мозга, Миславский (1885) пришел к заключению, что дыхательный центр (ДЦ) находится в ретикулярной формации продолговатого мозга по обеим сторонам шва на уровне корней подъязычного нерва. Клеточные структуры центра простираются от нижнего угла почли до основания писчего пера. С боков они ограничены веревчатыми телами, а снизу оливами и пирамидами. Миславский доказал, что дыхательный центр имеет инспираторную и экспираторную части (центр вдоха и центр выдоха). В настоящее время показано, что инспираторные нейроны преобладают каудальном отделе tractus solitarius, экспираторные - в вентральном ядре (nucleus ambiguus).

      Лумсден и другие исследователи в опытах на теплокровных животных показали, что ДЦ имеет более сложную структуру, чем предполагалось ранее. В верхней части варолиевого моста они обнаружили т.н. пневтомотаксический центр который контролирует деятельность    расположенных     ниже   в продолговатом мозге центров

вдоха и выдоха. Между инспираторными и экспираторными нейронами существуют реципрокные отношения. Это значит, что возбуждение одной группы нейронов тормозит деятельность другой и наоборот.

       Взаимодействие между нейронами ДЦ в настоящее время представляется следующим образом. Вследствие рефлекторных импульсом с хеморецепторов возникает возбуждение инспираторных нейронов и реципрокное торможение экспираторных. Одновременно импульсы от инспираторных нейронов поступают к центру пневмотаксиса, а от него к экспираторным нейронам, вызывая их возбуждение и акт выдоха. Одновременно центр выдоха возбуждается импульсацией с рецепторов растяжения легких. Активация экспираторных нейронов реципрокно тормозит инспираторный центр, но через центр пневмотаксиса наступает новое его возбуждение, подкрепляемое импульсацией от рецепторов спадения легких.

      Деятельность всей совокупности нейронов, образующих ДЦ, необходима для сохранения нормального дыхания. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы ЦНС, которые обеспечивают тонкие приспособительные изменения дыхания при различных видах деятельности. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, пении, спорте и трудовой деятельности. Способность коры головного мозга влиять на процессы внешнего дыхания видна из того, что можно произвольно менять частоту и ритм дыхания, и , кроме того, можно выработать условно-рефлекторные изменения дыхания (например, предстартовые изменения дыхания у спортсменов и т.п.).

 

      Функциональная система кислородного снабжения организма.

       До сих пор мы рассматривали лишь регуляцию внешнего дыхания. Однако для поддержания нормального уровня концентрации кислорода в крови одного внешнего дыхания недостаточно. В число исполнительных механизмов функциональной системы кислородного снабжения организма (ФСКС) входят еще механизмы, обеспечивающие связывание кислорода, его транспортировку, уровень окислительно восстановительных процессов, а также серию поведенческих проявлений, направленных на сохранение кислородного снабжения. Естественно, что системообразующим фактором в ФСКС выступает уровень кислорода в крови, который контролируется хеморецепторами. Схема ФСКС представлена на таблице. На практических занятиях Вы разберете ее более подробно.

      Наиболее наглядно вовлечение различных исполнительных механизмов ФСКС в реализацию полезного результата - обеспечения нормального содержания кислорода в крови - проявляется при различных экстремальных условиях, к которым прежде всего относятся условия пониженного или повышенного атмосферного давления.

 

          Особенности дыхания и снабжения организма кислородом в экстремальных условиях.

      Гипоксия и действие на организм пониженного атмосферного давления. Всякий недостаток кислорода в отдельных тканях или организме в целом носит название гипоксии. Недостаток кислорода крови называется гипоксемией.

         Гипоксия может быть четырех видов.

       1. При недостаточном насыщении крови кислородом наступает дыхательная (гипоксемическая) гипоксия. Такое состояние возникает в следующих случаях:

         - при низком парциальном давлении кислорода в воздухе;

         - при недостаточной вентиляции легких (непроходимость дыхательных путей, слабость дыхательных мышц, недостаточность дыхательного центра, пневмоторакс). При этом в крови отмечается гиперкапния, повышенная концентрация СО2.

        - при ухудшении диффузии газов через легочную мембрану (спазм бронхов, заполнение альвеол жидкостью при отеках, пневмонии, утоплении), которое тоже сопровождается гиперкапнией;

         - при некоторых видах порока сердца (не заросший боталлов проток и т.п).

       2. Анемическая гипоксия обусловлена понижением способности крови связывать кислород, т.е. снижением кислородной емкости крови. Это возникает при потере крови, связывании Hb другими веществами (окисью углерода, ферроцианидами и др.).

        3.В случае замедления движения крови в капиллярах при общей недостаточности кровообращения, вследствие недостаточного притока крови к отдельным органам возникает  гипоксия застойная, или циркуляторная. По существу , всякая смерть от остановки сердца является смертью от гипоксии.

         4. Когда ткани в силу инактивации окислительных ферментов (например, цианидами) не могут использовать кислород, возникает гистотоксическая гипоксия.

       За исключением циркуляторной гипоксии, происходящей в случае недостаточного притока крови к отдельным органам, остальные формы гипоксии ведут к недостаточному снабжению кислородом всех тканей. Но так как чувствительность разных тканей к недостатку кислорода различна, то одна и та же степень гипоксии может вызывать серьезные расстройства в деятельности одних органов, почти не затрагивая других, изменения в которых будут в первую очередь вызваны расстройствами, происходящими в наиболее чувствительных к гипоксии органах.

      Быстрее и резче всего на недостаток кислорода реагируют высшие отделы ЦНС и высшие рецепторы (сетчатка глаза). Это появляется особенно при быстром развитии и значительной гипоксии. В этом случае потря сознания может наступать мгновенно, как это бывает, например, при удушении или удавлении (прекращении притока крови к мозгу). При более медленном развитии гипоксии смерть также всегда наступает после потери сознания, т.е. после паралича функций высших отделов мозга.

      Почки, печень и сердечная мышца менее чувствительны к гипоксии, чем мозг, однако признаки расстройства их функций возникают довольно быстро. Скелетные, а особенно гладкие мышцы сохраняют жизнедеятельность при недостатке кислорода относительно долго, в течение нескольких часов (жгут накладывают на 2 часа, и после этого функции конечности восстанавливается).

      Следствием падения напряжения кислорода в крови сначала всегда является повышение деятельности дыхательного центра, что проявляется в учащении и углублении дыхания и приводит к росту МОД. Этот эффект зависит главным образом от рефлекторной стимуляции хеморецепторов дуги аорты и каротидного синуса. Усиление легочной вентиляции при гипоксии характерно при ее неглубокой стадии. Оно имеет положительное значение для организма, особенно в случае дыхательной гипоксии. В этом случае рост легочной вентиляции приводит к повышению парциального давления кислорода в крови. При других формах гипоксии, не зависящих от недостатка кислорода в артериальной крови, увеличение дыхательной деятельности не может способствовать устранению гипоксии.

       При углублении гипоксии наступает ослабление работоспособности дыхательного центра, сначала проявляющееся в периодическом Чейн-Стоксовом дыхании, которое не обеспечивает достаточной вентиляции легких. Тогда к причинам, вызывающим гипоксию, присоединяется недостаточное дыхание и получается порочный круг: гипоксия приводит к недостаточности дыхания, а недостаточность дыхания еще более усугубляет гипоксию. Разорвать этот круг можно лишь устранением причины гипоксии.

       Изменения кровообращения при гипоксии характеризуются тем, что в начальных ее фазах наступает учащение сердцебиений, рост минутного объема сердца, повышение артериального давления. Вследствие опорожнения депо масса циркулирующей крови увеличивается и растет кислородная емкость крови. Однако при длительной и тяжелой гипоксии наступает поражение центров регуляции кровообращения и получается второй порочный руг - гипоксия вызывает расстройство кровообращения, а оно усугубляет гипоксию.

      

        Особенности дыхания при пониженном атмосферном давлении. Наиболее изученной формой гипоксии является гипоксемическая гипоксия, особенно ее дыхательная форма. Человек встречается с этой формой гипоксии при подъеме на высоты, при полетах в стратосферу, при космических полетах. Артериальная кровь насыщена кислородом приблизительно на 95-90% до тех пор, пока барометрическое давление не падает ниже 500-550 мм Hg, что соответствует высоте 3-3,5 км над уровнем моря. При дальнейшем падении барометрического давления насыщение артериальной крови кислородом быстро снижается, оно доходит до 50% величины кислородной емкости при барометрическом давлении 270-300 мм Hg (7,5-8 км высоты).

      У значительного большинства людей до высоты 2,5-3 км над уровнем моря не наступает серьезных расстройств. Это, конечно, не значит, что организм находится в таком же состоянии, что и внизу. Хотя на высоте 1,5-3 км артериальная кровь обычно еще насыщена кислородом не менее 90% своей кислородной емкости, напряжение кислорода в крови уже снижено и начинают появляться описанные выше рефлекторные реакции - учащение и углубление дыхания, учащение пульса, выход крови из депо, рост эритропоэза. Все эти изменения у здорового человека как раз и обеспечивают сохранение работоспособности на данной высоте.

      С высоты 3-3,5 км у человека начинают обнаруживаться расстройства ряда функций, что зависит главным образом от изменения нормальной деятельности высших центров. На этой высоте падает не только напряжение кислорода в крови, но и количество связанного гемоглобином кислорода. Более или менее тяжелые симптомы дыхательной гипоксии начинаются обычно тогда, когда насыщение артериальной крови кислородом падает ниже 85-80% КЕК. Если же насыщение крови падает ниже 45% КЕК, то наступает смерть.

        При подъеме на значительные высоты вследствие расстройства регуляции отмечаются усталость, апатия, сонливость, дрожание пальцев, головная боль, одышка и сердцебиение, тошнота, т.е. развивается высотная или горная болезнь. В зависимости от индивидуальных особенностей и тренированности человека высота, на которой наступают тяжелые расстройства, может быть различной, но они наступают у всех. Высота 8,5-9 км является пределом, выше которого человек без дыхательного аппарата не может подняться без риска для жизни.

 

       Особенности дыхания при повышенном атмосферном давлении. В то время, как низкое атмосферное давление ведет к химическим сдвигам в организме, обусловленным недостатком кислорода, повышенное атмосферное давление, с которым человек сталкивается при водолазных работах, действует прежде всего как физический фактор.

        Погружение на каждые 10 м под поверхность воды означает повышение воздействующего на организм давления на 1 атмосферу, так что на глубине, скажем, 90 м на человека действует уже 10 атм. Хотя само пребывание под таким давлением, если оно продолжается не больше 2 часов, не опасно, но подъем с этой глубины при несоблюдении необходимых мер может привести к смерти.

       Дело в том, что когда человек подвергается повышенному давлению, то он может дышать только при подаче ему воздуха под таким же давлением. Растворение же газов в жидкости прямо пропорционально их парциальному давлению над жидкостью, и если 1 мл крови при дыхании на уровне моря растворяет 0,011 мл азота, но при давлении в 5 атмосфер - в 5 раз больше. Азот растворяется также во всех тканях, особенно в жировой и богатой жиром нервной ткани. При быстром переходе от давления в 5 атм. к обычному давлению ткани тела могут удержать в растворенном состоянии лишь 0,011 мл газа на 1 мл крови. Остальной азот переходит в газообразное состояние и образует пузырьки в тканях и крови. Такой пузырек может закупорить коронарную или мозговую артерию, что вызывает мгновенную смерть. Мелкие пузырьки азота, освобождающиеся в нервной ткани, суставах, мышцах и т.п., смерти не вызывают, но причиняют тяжелые боли.

      Чтобы избежать этих осложнений, нужно поднимать водолазов только с такой скоростью, чтобы газы из крови успевали выделяться легкими. Если же пришлось по жизненным показаниям срочно поднять человека с большой глубины, то его следует поместить в специальную декомпрессионную барокамеру, в которой можно восстановить большое давление, добиться повторного растворения пузырьков и затем снова под наблюдением врача медленно "поднимать" его на "поверхность".

       В настоящее время при погружении водолаза на большую глубину ему дают газовую смесь, где азот заменен гелием, который почти не растворяется в крови. Так как кислород под большим давлением токсичен, его добавляют к гелию в такой концентрации, чтобы парциальное давление его на глубине было равно тому давлению, которое имеется в обычных условиях.

 

       Дыхание при мышечной работе. Интенсивность дыхания тесно связана с интенсивностью окислительных процессов: глубина и частота дыхательных движений уменьшаются в покое и увеличиваются при работе, притом тем сильнее, чем напряженнее работа. Мышечная работа всегда сопровождается увеличением легочной вентиляции, что совершенно необходимо для удовлетворения возникающей при работе потребности в кислороде. При интенсивной работе легочная вентиляция может достигать 120 л/мин вместо 5-8 л/мин в покое.

       Исследования физиологов показали, что усиление дыхания при мышечной работе зависит, во-первых, от увеличения концентрации углекислоты и раздражения хеморецепторов, а во-вторых, от раздражения проприорецепторов мышц. Наложение жгута на работающую ногу вызывает увеличение вентиляции так же, как и без жгута.

       Одновременно с усилением дыхания во время работы наступает усиление деятельности сердца, приводящее к увеличению минутного объема кровотока.  

      Вентиляция легких и МОК нарастают в соответствии с величиной выполняемой работы. Вычислено, что при повышении потребности кислорода при мышечной работе на 100 мл/мин МОК возрастает на 1000 мл.

      Увеличению транспорта кислорода при тяжелой мышечной работе способствует также выброс эритроцитов из депо и обеднение крови водой вследствие потения, что ведет к некоторому сгущению крови и повышению концентрации Нb, а значит и КЕК. 

       Значительно растет при мышечной работе коэффициент утилизации кислорода. Из каждого литра крови в покое утилизируется 80 мл, при работе до 120 мл кислорода. Повышенное поступление кислорода в ткани при мышечной работе зависит от того, что понижение напряжения кислорода а мышцах, увеличение напряжения углекислого газа и концентрации водородных ионов способствует увеличению диссоциации оксигемоглобина.

        Одной из причин увеличения легочной вентиляции при интенсивной мышечной работе является накопление молочной кислоты в тканях и переход ее в кровь. Содержание молочной кислоты в крови может достигать при этом 200 мг% против 5-22 мл в покое. Молочная кислота вытесняет угольную кислоты и ее связей с ионами натрия и калия, что приводит к повышению напряжения СО2 в крови и возбуждению дыхательного центра. Накопление молочной кислоты при мышечной работе возникает потому, что интенсивно работающие мышечные волокна испытывают недостаток в кислороде и часть молочной кислоты не может окислиться до конечных продуктов. Такое состояние называется кислородной задолженностью. Окисление образовавшейся во время работы молочной кислоты завершается уже после окончания работы - во время восстановительного периода, в течение которого сохранятся интенсивное дыхание, достаточное для того, чтобы излишнее количество накопившейся в организме молочной кислоты было ликвидировано. 

ОБНОВЛЕНИЯ

ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

ПРЕДМЕТЫ

О НАС

«Dendrit» - информационный портал для медицинских работников, студентов медицинских ВУЗов, исследователей и пациентов.

Ваш источник новостей и знаний о здоровье.