ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

Морфологическая характеристика, морфогенез и гистогенез опухолей

МОРФОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ОПУХОЛЕЙ

Опухоли построены из паренхимы и стромы. Паренхима опу­холи — это собственно опухолевые клетки, образовавшиеся в ре­зультате злокачественной трансформации клетки-предшествен­ницы и ее клональной пролиферации.

Структура опухолевой клетки

Структурные изменения затрагивают все компоненты опухо­левой клетки — ядро, цитоплазму, мембраны, органеллы и цито-скелетон. Это называется морфологическим атипизмом опухоли и в общих чертах было разобрано в предыдущей лекции.

Ядра опухолевых клеток. Как правило, ядра опухолевых кле­ток увеличены, полиморфны, их контуры изрезаны, структура изменена. Ядро имеет неупорядоченно расположенный хроматин с конденсацией его в виде глыбок под кариолеммой. При этом увеличивается относительное содержание гетерохроматина, со­держащего неактивную ДНК, по сравнению с эухроматином, по­строенным из активно работающей ДНК. Уменьшение содержа­ния активно работающей ДНК, а следовательно, и активно рабо­тающих генов в опухолевой клетке отражает тот факт, что в функциональном отношении опухолевая клетка очень примитив на, требует генетического и метаболического обеспечения в ос­новном процессов роста и размножения. Размеры ядра увеличи­ваются за счет нарушения процессов эндоредупликации ДНК, по­липлоидии, эндомитозов, увеличения хромосом в ряде новообра­зований. В ядрах могут обнаруживаться разнообразные включе­ния: вирусные частицы, внутриядерные тельца, тубулярныс структуры, пузырьки, выросты, карманы ядерной мембраны.

Наблюдаются также изменения ядрышек — увеличение их размеров, количества, появление "персистирующих" ядрышек, не исчезающих во время митозов, увеличение размеров ядрыш-кового организатора, в котором сконцентрирована ядрышковая ДНК, кодирующая рибосомальную РНК. Поэтому изменения данной ультраструктуры происходят параллельно с изменениями белоксинтетической функции клетки.

Ядерная мембрана опухолевых клеток бедна ядерными пора­ми, что затрудняет транспортные связи между ядром и цитоплаз­мой.

Описанные структурные изменения ядер опухолевых клеток сочетаются с хромосомными и генными перестройками:-хромо­сомными аберрациями (количественными и качественными из­менениями хромосом), генными мутациями с нарушением про­цессов репарации ДНК, активацией протоонкогенов и супресси­ей или потерей генов-супрессоров опухолевого роста. Хромосом­ные аберрации представлены потерей или избытком каких-либо хромосом, появлением кольцевидных хромосом, транслокацией, делецией и редупликацией хромосом.

Классическим примером реципрокной транслокации хромо­сом с активацией при этом протоонкогенов являются лимфома Беркитта и хронический миелолейкоз (см. лекцию 20 "Опу­холевый рост"). Делеция, или нетранскрипционная перестройка характеризуется потерей генетического материала. Примером служит делеция в хромосоме 11, при опухоли почек Вильмса и в хромосоме 13 при ретинобластоме. В ретинобластоме при этом происходит потеря антионкогена Rb. При лейкозах описаны де-леции хромосом, опережающие на несколько лет развитие лей­коза. Редупликация хромосом часто сочетается с процессами транслокации и делеции. При хроническом миелолейкозе, поми­мо маркерного признака в виде филадельфийской хромосомы, например в стадии обострения, нередко наблюдается также поли-сомия по хромосомам 8, 17 и 19.

Увеличение частоты неоплазм с возрастом связывают с нако­плением в соматических клетках мутаций и с возрастной дере-прессией репарации ДНК.

Цитоплазма, органеллы и цитоплазматическая мембрана опу­холевых клеток. Поверхность опухолевых клеток отличается увеличенной складчатостью, появлением микровыростов, пу-зырьков, а в ряде опухолей и микроворсинок различной конфигу-рации и плотности. Полагают, что в области микроворсинок обычно концентрируются рецепторы, способны воспринимать канцерогенные агенты. Эндоплазматическая сеть в опухолевых клетках может быть развита в разной степени, что отражает бе-локсинтетическую функцию. Усиление анаэробного гликолиза сопровождается уменьшением в опухолевых клетках количества митохондрий, а также появлением крупных и гигантских мито-хондрий с нарушенной ориентацией крист. В то же время имеет­ся небольшое количество типов опухолей с высоким содержани­ем митохондрий в цитоплазме (онкоцитомы, зернисто-клеточ-ный, почечно-клеточный рак).

Особенности цитоскелетона опухолевой клетки обусловлены неупорядоченностью расположения его компонентов. Микро­трубочки образуют перинуклеарную сеть, а микрофиламенты в виде, пучков обычно локализуются под цитолеммой. Перестрой­ки в цитоскелетоне нарушают работу интегриновых рецепторов и адгезивных молекул, что отражается на изменениях в межкле­точных взаимодействиях, обеспечивает процессы инвазивного роста и метастазирования.

Строма опухоли

Второй важный структурный компонент опухоли — ее стро­ма. Строма в опухоли, так же как и строма в нормальной ткани, в основном выполняет трофическую, модулирующую и опорную функции. Стромальные элементы опухоли представлены клетка­ми и экстрацеллюлярным матриксом соединительной ткани, со­судами и нервными окончаниями. Экстрацеллюлярный матрикс опухолей представлен двумя структурными компонентами: ба-зальными мембранами и интерстициальной соединительной тка­нью. В состав базальных мембран входят коллагены IV, VI и VII типов, гликопротеиды (ламинин, фибронектин, витронектин), протеогликаны (гепаран-сульфат и др.). Интерстициальная со-

единительная ткань опухоли содержит коллагены I и III типов, фибронектин, протеогликаны и гликозаминогликаны. Происхождение стромы опухоли. В настоящее время получе­ны убедительные экспериментальные данные о возникновении клеточных элементов стромы опухолей из предсуществующих нормальных соединительнотканных предшественников окружа­ющей опухоль ткани. J.Folkman (197I) показал, что клетки злока­чественных опухолей продуцируют некий фактор, стимулирую­щий пролиферацию элементов соосудистой стенки и рост сосу­дов. Это сложное вещество белковой природы впоследствии бы­ло названо фактором Фолькмана. Как затем было установлено, фактор Фолькмана представляет собой группу факторов роста фибробластов, которых уже известно более 7. Фолькман первым доказал, что стромообразование в опухоли является результатом сложных взаимодействий опухолевой клетки и клеток соедини­тельной ткани.

Важную роль в стромообразовании в неоплазме выполняют соединительнотканные клетки как местного, гистиогенного, так и гематогенного происхождения. Стромальные клетки продуци­руют разнообразные факторы роста, стимулирующие пролифе­рацию клеток мезенхимного происхождения (факторы роста фи­бробластов, фактор роста тромбоцитов,ФНО-а, фибронектин, инсулиноподобные факторы роста и др.), некоторые онкобелки (c-sic, c-myc), одновременно экспрессируют рецепторы, связыва­ющие факторы роста и онкобелки, что позволяет стимулировать их пролиферацию как по аутокринному, так и по паракринному пути. Кроме того, сами клетки стромы способны выделять разно­образные протеолитические ферменты, приводящие к деграда­ции экстрацеллюлярный матрикс.

Опухолевые клетки активно участвуют в образовании стро­мы. Во-первых, трансформированные клетки стимулируют про­лиферацию соединительнотканных клеток по паракринному ре-гуляторному механизму, продуцируют факторы роста и онкобел­ки. Во-вторых, они способны стимулировать синтез и секрецию соединительнотканными клетками компонентов экстрацеллю-лярного матрикса. В-третьих, сами опухолевые клетки способны секретировать определенные компоненты экстрацсллюлярного матрикса. Причем определенный тип таких компонентов имеет характерный состав в некоторых опухолях, что можно использо­вать при их дифференциальной диагностике. В-четвертых, опу­холевые клетки продуцируют ферменты (коллагеназы и др.), их ингибиторы и активаторы, способствующие или, напротив, пре­пятствующие инфильтрирующему и инвазивному росту злокаче­ственных опухолей. Динамическое равновесие между коллагена-зами, их активаторами и ингибиторами обеспечивает стабильное состояние опухоли и препятствует прорастанию ее в прилежащие ткани. В момент роста опухолевые клетки активно синтезируют коллагеназы, эластазы и их ингибиторы.

Таким образом, образование стромы в опухоли является сложным многостадийным процессом, основными ступенями ко­торого можно считать следующие:

- секреция опухолевыми клетками митогенных цитокинов — различных факторов роста и онкобелков, стимулирующих про­лиферацию соединительнотканных клеток, прежде всего эндоте­лия, фибробластов, миофибробластов и гладких мышечных кле­ток;

- синтез опухолевыми клетками некоторых компонентов экст-рацеллюлярного матрикса — коллагенов, ламинина фибронек-тина и др.;

- пролиферация и дифференцировка клеток-предшественниц соединительнотканного происхождения, секреция ими компонен­тов экстрацеллюлярного матрикса и формирование тонкостен­ных сосудов капиллярного типа, что в совокупности и составляет строму опухоли;

- миграция в строму опухоли клеток гематогенного происхож­дения — моноцитов, плазмоцитов, лимфоидных элементов, туч­ных клеток и др.

Злокачественные опухоли часто формируют строму, в кото­рой доминирует тип коллагена стромы соответствующего органа на стадии эмбрионального развития. Так, в строме рака легкого преобладающим типом коллагена является коллаген III, харак­терный для эмбрионального легкого. Разные опухоли могут от­личаться по составу коллагенов стромы. В карциномах, как пра­вило, доминируют коллагены III типа (рак легкого), IV типа (по-чечноклеточный рак и нефробластомы). В саркомах — интер-стициальные коллагены, но в хондросаркоме — коллаген II типа, в синовиальной саркоме — достаточно много коллагена IV типа. Описанные различия в композиции стромы особенно важно учи­тывать при дифференциальной диагностике сарком.

Аигиогеиез в опухоли. Рост опухолей зависит от степени раз­витости в них сосудистой сети. В новообразованиях диаметром менее 1—2 мм питательные вещества и кислород поступают из тканевой жидкости окружающих тканей путем диффузии. Для питания же более крупных новообразований необходима васку-ляризация их ткани.

Ангиогенез в опухоли обеспечивается группой ангиогенных факторов роста, некоторые из которых могут генерироваться также активированными эпителиальными клетками в очагах хронического воспаления и регенерации. Группа ангиогенных факторов опухоли включает в себя факторы роста фибробла­стов, эндотелия, ангиогенин, фактор роста кератиноцитов, эпи-дермоидный фактор роста, фактор роста сосудов глиомы, неко­торые колониестимулирующие костномозговые факторы и др.

Наряду с факторами роста в ангиогенезе имеет большое зна­чение состав экстрацеллюлярного матрикса стромы опухоли. Благоприятным является содержание в нем компонентов базаль-ных мембран — ламинина, фибронектина и коллагена IV типа. Формирование сосудов в опухолях происходит на фоне извра­щенной митогенетической стимуляции в измененном экстрацел-люлярном матриксе. Это приводит к развитию неполноценных сосудов преимущественно капиллярного типа, имеющих нередко прерывистую базальную мембрану и нарушенную эндотелиаль-ную выстилку. Эндотелий может замещаться опухолевыми клет­ками, а иногда и вовсе отсутствовать.

Роль стромы. Для опухоли роль стромы не ограничивается только трофическими и опорными функциями. Строма оказыва­ет модифицирующее влияние на поведение опухолевых клеток, т.е. регулирует пролиферацию, дифференцировку опухолевых клеток, возможность инвазивного роста и метастазирования. Мо дифицирующее воздействие стромы на опухоль осуществляется благодаря наличию на клеточных мембранах опухолевых клеток интегриновых рецепторов и адгезивных молекул, способных пе­редавать сигналы на элементы цитоскелетона и дальше в ядро опухолевой клетки.

Интегриновые рецепторы — класс гликопротеи-дов, расположенных трансмембранно, внутренние концы кото­рых связаны с элементами цитоскелетона, а наружный, внекле­точный, способен взаимодействовать с трипептидом субстрата Arg — Gly — Asp. Каждый рецептор состоит из двух субъеди­ниц — альфа и бета, имеющих множество разновидностей. Раз­нообразие сочетаний субъединиц обеспечивает разнообразие и специфичность интегриновых рецепторов. Интегриновые рецеп­торы в опухолях подразделяются на межклеточные и интегри­новые рецепторы между опухолевыми клетками и компонента­ми экстрацеллюлярного матрикса — ламининовые, фибронек-тиновые, витронектиновые, к различным типам коллагенов, гиа-луронатовые (к адгезивным молекулам семейства CD44). Интег­риновые рецепторы обеспечивают межклеточные взаимодейст­вия между опухолевыми клетками, а также с клетками и экстра-целлюлирным матриксом стромы. В конечном итоге интегрино­вые рецепторы определяют способность опухоли к инвазивному росту и метастазированию.

Адгезивные молекулы САМ (от англ. cell adhesiv molecules) — другой важный компонент клеточных мембран опу­холевых клеток, обеспечивающий их взаимодействие между со­бой и со стромальными компонентами. Они представлены семей­ствами NCAM, LCAM, N-кадгерином, CD44. При опухолевой трансформации происходит изменение структуры и экспрессии адгезивных молекул, входящих в состав клеточных мембран, что приводит к нарушению взаимосвязи опухолевых клеток, а следо­вательно, инвазивному росту и метастазированию.

В зависимости от развитости стромы опухоли под­разделяют на органоидные и гистиоидные.

В органоидных опухолях имеются паренхима и развитая стро­ма. Примером органоидных опухолей могут служить различные опухоли из эпителия. При этом степень развитости стромы мо­жет также варьировать от узких редких фиброзных прослоек и сосудов капиллярного типа в медуллярном раке до мощных по­лей фиброзной ткани, в которой эпителиальные опухолевые це­почки едва бывают различимыми, в фиброзном раке, или скирре.

В гистиоидных опухолях доминирует паренхима, строма пра­ктически отсутствует, так как представлена лишь тонкостенны­ми сосудами капиллярного типа, необходимыми для питания. По гистиоидному типу построены опухоли из собственной соедини­тельной ткани и некоторые другие неоплазмы.

Характер роста опухолей по отношению к окружающим тканям бывает экспансивным с фор­мированием соединительнотканной капсулы и оттеснением при­лежащих сохранных тканей, а также инфильтрирующим и инва-зивным с прорастанием прилежащих тканей.

В полых органах выделяют также два типа роста в з а в и с и -мости от отношения опухоли к их просве-I у : экзофшпный при росте опухоли в просвет, и эндофит-ный — при росте опухоли в стенку органа.

В зависимости о т количества узлов первичной опухоли неоплазмы могут обладать уницентрическим или мультицентрическим характером роста.

МОРФОГЕНЕЗ ОПУХОЛЕЙ

Разбирая морфогенез опухолей, необходимо остановиться на четырех вопросах: 1) возникает ли опухоль без каких-либо пред­шествующих изменений сразу, "с места в карьер" — de novo — или же стадийно? 2) в случае стадийного развития опухоли, како­ва сущность этих стадий, в том числе и процесса метастазирова­ния? 3) развивается ли неоплазма из одной трансформированной клетки, и тогда все опухолевые клетки относятся к одному кло­ну, или же опухолевому росту предшествует трансформация мно­гих клеток? 4) каково взаимодействие опухоли и организма-опу-холеносителя?

Стадийность морфогенеза опухолей

На первые два вопроса о развитии опухолей de novo или ста­дийно отвечают две теории — скачкообразной и стадийной трансформации.

Теория скачкообразной трансформации. В соответствии с этой теорией H.Ribbert, M.Borst, B.Fischer (1914) опухоль может развиться без предшествующих изменений тканей, о чем свиде­тельствуют данные экспериментального вирусного канцерогене­за, а также разнообразные клинические наблюдения. Теоретиче­ски возможность скачкообразного развития опухоли подтвер­ждается существованием одноступенчатой модели вирусного канцерогенеза. В подавляющем же большинстве эксперимен­тальных моделей опухолей речь идет о многоступенчатом разви­тии опухолей (см. лекцию 20 "Опухолевый рост").

Теория стадийной трансформации при опухолевом росте бы­ла разработана отечественным онкологом-экспериментатором Л.М.Шабадом (1968), который одним из первых высказывался о решающем значении мутации соматических клеток в происхож­дении злокачественных опухолей. В 60-х годах, изучая экспери­ментальный канцерогенез в различных органах, он предложил выделять четыре стадии в морфогенезе злокачественных опухо­лей, три из которых относятся к предопухолевым процессам: 1) очаговая гиперплазия; 2) диффузная гиперплазия; 3) доброкаче­ственная опухоль; 4) злокачественная опухоль.

В настоящее время расшифрованы и уточнены следующие стадии морфогенеза злокачественных опу­холей:

- стадия предопухоли — гиперплазии и предопухолевой диспла­зии;

- стадия неинвазивной опухоли (рак на месте); - стадия инвазивного роста опухоли; - стадия метастазирования.

Вопрос о взаимоотношении доброкачественных и злокачест­венных опухолей решается неоднозначно. Бесспорно, существу­ют доброкачественные опухоли, которые могут трансформиро­ваться в злокачественные. Примером могут служить аденоматоз-ные полипы, аденомы и папилломы, в которых развиваются фо­кусы малигнизации и рак. Но есть также доброкачественные опухоли, практически никогда не трансформирующиеся в злока­чественные аналоги.

Предопухолевая дисплазия. Развитию большин­ства злокачественных опухолей предшествуют предопухолевые процессы, что наиболее детально изучено в группе эпителиаль­ных опухолей и опухолей системы крови и лимфоидной ткани. В первом случае речь идет о предраке, во втором — о предлейкозе и предлимфоме. К предопухолевым процессам в настоящее вре­мя относят диспластические процессы, которые характеризуют­ся развитием изменений как в паренхиматозных, так и стромаль-ных элементах. Основными морфологическими критериями дис-пластических процессов считают появление признаков клеточно­го атипизма в паренхиме органа при сохранной структуре ткани. В строме очагов дисплазии регистрируются изменения состава экстрацеллюлярного матрикса, появление клеточного инфильт­рата, фибробластическая реакция и др. При дисплазии эпителия обнаруживаются полиморфные эпителиальные клетки с гипер-хромными ядрами и фигурами митозов не только в базальных от­делах, утолщается базальная мембрана, накапливаются коллаге­ны определенных типов и появляются лимфоидные инфильтра­ты. В случае предлейкоза увеличивается процент бластных кле­ток до 9. Помимо стереотипных проявлений дисплазии как предопухолевого процесса, в разных органах и тканях имеются и свои специфические черты, о чем будет сказано в соответствующих лекциях в частном курсе патологической анатомии.

В большинстве органов диспластический процесс развивается при наличии пролиферации клеточных элементов на фоне пред­шествующей гиперплазии в связи с хроническим воспалением и дисрегенерацией. Однако в ряде случаев дисплазия сочетается с атрофией ткани, как это бывает при атрофическом гастрите с перестройкой эпителия, а также при циррозе печени. Сочетание дисплазии и атрофии не случайно, так как и тот, и другой процес­сы имеют общие генетические механизмы, в которых участвует ряд клеточных онкогенов, ген-супрессор р53 и др. В одних ситуа­циях активация данных генов приводит к апоптозу и атрофии без или в сочетании с дисплазией, в других — к пролиферации также без или в сочетании с дисплазией.

На стадии дисплазии методами иммуногистохимии и молеку­лярной биологии регистрируются перестройки в работе онкопро-теинов, факторов роста, интегриновых рецепторов и адгезивных молекул. Причем генетические перестройки могут значительно опережать морфологические изменения и служить ранними при­знаками предопухолевых изменений.

Стадия неинвазивной опухоли. Прогрессирова-вие дисплазии связывают с дополнительными воздействиями, ве­дущими к последующим генетическим перестройкам и злокаче­ственной трансформации. В результате возникает малигнизиро-ванная клетка, которая некоторое время делится, формируя узел (клон) из себе подобных клеток, питаясь за счет диффузии пита­тельных веществ из тканевой жидкости прилежащих нормаль­ных тканей и не прорастая в них. На данной стадии опухолевый узел не имеет еще своих сосудов. Причина этого неизвестна. Ве-роятно, малая масса опухоли обусловливает недостаточную про­дукцию факторов, стимулирующих ангиогенез и стромообразо-вание в опухоли. Однако, по нашему мнению, представляется бо­лее верной точка зрения об отсутствии в неинвазивной опухоли определенных генных перестроек, которые необходимы для осу­ществления инвазивного роста.

В случае рака стадия роста опухоли "самой в себе" без разру­шения базальной мембраны и без образования стромы и сосудов называется стадией рака   на   месте — cancer in situ, и выделяется в самостоятельную морфогенетическую стадию. Длитель­ность течения данной стадии может достигать 10 лет и более. Стадия инвазивной опухоли. Она характеризу­ется появлением инфильтрирующего роста. В опухоли появля­ются развитая сосудистая сеть, строма, выраженная в различной степени, границы с прилежащей неопухолевой тканью отсутству­ют за счет прорастания в нее опухолевых клеток.

Инвазия опухоли протекает в три фазы и обеспечивается оп ределенными генетическими перестройками. Первая фаза инва зии опухоли характеризуется ослаблением контактов между клетками, о чем свидетельствуют уменьшение количества меж клеточных контактов, снижение концентрации некоторых адге­зивных молекул из семейства CD44 и др. и, наоборот, усиления экспрессии других, обеспечивающих мобильность опухолевых клеток и их контакт с экстрацеллюлярным матриксом. На кле­точной поверхности снижается концентрация ионов кальция, что приводит к повышению отрицательного заряда опухолевых кле­ток. Усиливается экспрессия интегриновых рецепторов, обеспе­чивающих прикрепление клетки к компонентам экстрацеллю-лярного матрикса — ламинину, фибронектину, коллагенам. Во второй фазе опухолевая клетка секретирует протеолитические ферменты и их активаторы, которые обеспечивают деградацию экстрацеллюлярного матрикса, освобождая тем самым опухоли путь для инвазии. В то же время продукты деградации фиброне-ктина и ламинина являются хемоаттрактантами для опухолевых клеток, которые мигрируют в зону деградации в третьей фазе ин­вазии, а затем процесс повторяется снова.

Стадия метастазирования. Это заключительная стадия морфогенеза опухоли, сопровождающаяся определенны­ми гено- и фенотипическими перестройками опухоли. Процесс метастазирования связан с распространением опухолевых клеток из первичной опухоли в другие органы по лимфатическим, кро­веносным сосудам, периневрально, имплантационно, что легло в основу выделения видов метастазирования.

Процесс метастазирования объясняется с помощью теории метастатического каскада, в соответствии с которой опухолевая клетка претерпевает цепь (каскад) перестроек, обеспечивающих распространение в отдаленные органы. В процессе метастазиро­вания опухолевая клетка должна обладать определенными каче­ствами, позволяющими ей проникать в прилежащие ткани и про­светы сосудов (мелких вен и лимфатических сосудов); отделяться от опухолевого пласта в ток крови (лимфы) в виде отдельных клеток или небольших групп клеток; сохранять жизнеспособ­ность после контакта в токе крови (лимфы) со специфическими и неспецифическими факторами иммунной защиты; мигрировать в венулы (лимфатические сосуды) и прекрепляться к их эндоте­лию в определенных органах; осуществлять инвазию микрососу­дов и расти на новом месте в новом окружении.

Метастатический каскад условно может быть разделен на че­тыре этапа:

-        формирование метастатического опухолевого субклона;

-        инвазия в просвет сосуда;

-   циркуляция опухолевого эмбола в кровотоке (лимфотоке); -   оседание на новом месте с формированием вторичной опухо­ли (рис. 5).

Процесс метастазирования начинается с появления метастати­ческого субклона опухолевых клеток с измененной плазмолем-мой, в результате чего клетки теряют межклеточные контакты и приобретают способность к передвижению. Затем опухолевые клетки мигрируют через экстрацеллюлярный матрикс, прикреп­ляясь интегриновыми рецепторами к ламинину, фибронектину, коллагеновым молекулам базальной мембраны сосуда, осущест­вляют ее протеолиз за счет выделения коллагеназ, катепсина, эластазы, гликозаминогидролазы, плазмина и др. Это позволяет опухолевым клеткам инвазировать базальную мембрану сосуда, прикрепляться к его эндотелию, а затем, изменяя свои адгезив­ные свойства (супрессия адгезивных молекул семейства САМ), отделяться как от опухолевого пласта, так и от эндотелия сосуда. На следующем этапе формируются опухолевые эмболы, кото­рые могут состоять только из опухолевых клеток или же из опу­холевых клеток в сочетании с тромбоцитами и лимфоцитами. Фибриновое покрытие таких эм болов может защищать опухолевые клетки от элиминации клетками иммунной системы и дейст­вия неспецифических факторов защиты. На заключительном этапе опухолевые клетки взаимодействуют с эндотелием венул за счет "homing''-рецепторов и молекул семейства CD44, происхо­дит прикрепление и протеолиз базальной мембраны, инвазия в периваскулярную ткань и рост вторичной опухоли.

Клональные теории происхождения и эволюции опухоли

Важнейшим в онкогенезе является вопрос о том, развивается ли злокачественная опухоль при малигнизации одной клетки или нескольких. Ответ на этот вопрос неоднозначен, так как, хотя большинство опухолей и имеет моноклоновое происхождение, существует небольшое число опухолей, формирующихся из не­скольких клеток.

Теория     моно к л оно в о г о     происхождения опухолей. У большинства опухолей такое происхождение доказывается наблюдениями неоплазм у женщин, гетерозигот­ных по изоформе глюкозо-6-фосфатдегидрогеназы (Г-6-ФДГ). Известно, что ген Г-6-ФДГ локализуется в Х-хромосомах, одна из которых получена от матери, а другая от отца. Одна из двух Х-хромосом, содержащихся в каждой клетке, инактивируется на стадии бластоцисты, и в клетке остается единственная Х-хромо-сома, кодирующая ту или иную изоформу Г-6-ФДГ. Это приводит к тому, что все клетки женского организма подразделяются на две группы в зависимости от изоформы Г-6-ФДГ. Описанная ге­терогенность по Г-6-ФДГ свойственна многим женщинам негри­тянского происхождения. При этом установлено, что развиваю­щиеся у них опухоли состоят из клеток только одного вида по изоформе Г-6-ФДГ, т.е. имеют моноклоновое происхождение. Методом инактивации Х-хромосомы доказано моноклоновое происхождение аденом и карцином толстой кишки, аденом око­лощитовидной железы. При хроническом миелолейкозе имеется другой маркер моноклонового происхождения опухолевых кле­ток — филадельфийская хромосома, при Т- и В-клеточных лим-фомах и лейкозах — специфические перестройки генов Т- и В-рецепторов, выявляемые с помощью блот-анализа ДНК. Моно­клоновое происхождение сопровождается ростом опухоли на на­чальной стадии развития в виде одного узла — т.е. имеет место уницентрической характер роста.

Однако моноклоновость уже развившейся опухоли может быть результатом не моноклонового ее происхождения, а возни­кать в итоге селекции наиболее злокачественного клона опухо­левых клеток и вытеснения им менее злокачественных клонов.

Теория поликлонового происхождения о п у х о л е й . Поликлоновое происхождение опухолей встреча­ется значительно реже, чем моноклоновое, и характерно для опу­холей с мультицентричным характером роста, таких как полипоз толстой кишки, мультицентрический рак молочной железы и пе­чени и др.

Мультицентрический характер роста может обусловливать и формирование единого узла опухоли при близком расположении и слиянии нескольких очагов роста. Это положение впервые ооосновал Willis в своей теории опухолевого поля (1967). Согласно данной теории, возможно образование одновре­менно нескольких очагов пролиферации клеток с их последую­щей трансформацией. По мере роста опухолевые очаги сливают­ся. При этом опухолевые клетки принадлежат к разным клонам.

В ходе прогрессии опухоли может происходить ее кле­пальная эволюция [Nowell P., 1988], т.е. могут появлять­ся новые клоны опухолевых клеток, возникающие в результате вторичных мутаций, что приводит к поликлоновости опухоли и доминированию наиболее агрессивных клонов как итог кло-нальной селекции. Доброкачественные опухоли характе­ризуются доминированием опухолевых клеток одного клона на протяжении всего существования, в то время как в злокачествен­ных опухолях постоянно прогрессирует поликлоновость, особен­но при низкодифференцированных высокозлокачественных ва­риантах. Теория клональной эволюции может помочь в объясне­нии не только прогрессии злокачественной опухоли и метастази-рования, но также дать ответы на следующие вопросы: почему в опухолях может возникать феномен "метаплазии" — изменения дифференцировки клеток на отдельных участках? Как может усиливаться злокачественность опухоли со временем или особен­но после проведения противоопухолевой терапии? Почему воз­никают устойчивые к противоопухолевым воздействиям опухоли спонтанно и после терапевтических воздействий (феномен мно­жественной лекарственной устойчивости опухоли).

Взаимодействие опухоли и организма-опухоленосителя

Взаимодействие опухоли и организма-опухоленосителя скла­дывается из действия опухоли на организм и защиты организма-опухоленосителя от опухоли.

Действие опухоли на организм хозяина. Проявляется в ло­кальном и общем воздействии.

Локальное воздействие включает в себя нарушения метабо­лизма, сдавление прилежащих и разрушение растущей опухолью сохранных тканей, прорастание стенок сосудов, что может при­водить к местному венозному застою. Некроз и изъязвление опу­холи могут сопровождаться кровотечением, присоединением вто­ричных инфекций.

Общее воздействие опухоли на организм хозяина может при­водить к развитию различных анемий, раковой интоксикации, ра­ковой кахексии и паранеопластических синдромов. Остановимся на двух последних проявлениях.

Раковая кахексия. Характеризуется истощением больного с развитием бурой атрофии миокарда, печени и скелет­ной мускулатуры. Возникновение раковой кахексии связывают с увеличением уровня белкового обмена в ткани опухоли, которая становится ловушкой всех питательных веществ и обрекает орга­низм на "голодание". В последние годы развитие раковой кахек­сии связывают также с усиленной продукцией а-ФНО макрофа­гами и другими клетками в организме-опухоленосителе. а-ФНО называется кахектином, и его патогенетическая роль в возникно­вении кахексии доказана пока только в экспериментах на живот­ных.

Паранеопластические синдромы. Это синдро­мы, обусловленные наличием опухоли в организме. Патогенез их различен, но всегда ключевое событие обусловлено воздействи­ем неоплазмы. При гормонально-активных опухолях могут воз­никнуть различные эндокринопатии, как, например, синдром Иценко — Кушинга при аденомах передней доли гипофиза или нейроэндокринных опухолях легких; гиперкальциемия и остео-пороз при аденомах околощитовидных желез и раке легкого. Опухоль, особенно на стадии метастазирования, воздействует на свертывающую и противосвертывающую систему крови, сама продуцирует факторы, усиливающие коагуляцию крови, и спо­собствует развитию различных тромбопатий (мигрирующие тромбофлебиты, небактериальный тромбоэндокардит) и афиб-риногенемии. При опухолевом росте описан широкий спектр им­мунопатологических процессов с иммунокомплексными, анти­тельными и цитотоксическими механизмами развития. Эти про­цессы приводят к возникновению у онкологических больных нейропатий, миопатий и дерматопатий.

Механизмы противоопухолевой защиты организма. Они раз­нообразны и складываются из защитных реакций с участием про­цессов репарации мутированного участка ДНК, сбалансирован­ной работы генов-супрессоров и клеточных онкогенов, а также из факторов неспецифической и специфической, иммунной и не­иммунной защиты.

В защите от опухоли имеют значение реакции клеточного и гуморального иммунитета (рис. 6). Основными клетками, участ­вующими в противоопухолевой иммунной защите, являются спе­цифические цитотоксические Т-лимфоциты, способные распоз­навать мембраносвязанные опухолевые антигены (см. лек­цию 20), а также антигены, относящиеся к антигенам I класса ос­новного комплекса гистосовместимости; натуральные Т-килле-ры (NK-клетки), вызывающие деструкцию опухолевых клеток без предварительной сенсибилизации. Лизис осуществляется за счет непосредственного связывания с опухолевыми клетками или же через Fc-фрагменты противоопухолевых антител; макрофаги осуществляют как неспецифическое повреждение опухолевых клеток через выделение а-ФНО и других факторов, так и специ фическое иммунное повреждение путем присоединения к Fc-фрагментам противоопухолевых антител и через активацию Т-лимфоцитов, выделяющих 7-интерферон и другие цитокины.

Антительный механизм противоопухолевого иммунитета мо­жет осуществляться связыванием противоопухолевыми антите­лами комплемента с формированием литического комплекса, ко­торый взаимодействует с опухолевой клеткой, присоединением к опухолевой клетке через Fc-фрагмент противоопухолевых анти­тел NK-клеток и макрофагов.

Интересным является вопрос о неэффективности иммунных реакций в защите от опухоли. Эту неэффективность, вероятно, можно объяснить развитием иммуносупрессии у онкологических больных, наличием феномена антигенного ускользания опухоли в связи с антигенной лабильностью, антигенным упрощением ее клеток, а также усилением роста опухоли под влиянием противо­опухолевых антител.

ГИСТОГЕНЕЗ ОПУХОЛЕЙ

Термин "гистогенез опухолей" означает тканевое происхождение опухоли, что не совсем точно, так как в настоя­щее время мы можем нередко определять не только тканевое, но и клеточное происхождение неоплазмы, т.е. ее цитогенез. Осо­бенно хорошо изучен цитогенез опухолей кроветворной и лим-фоидной ткани — гемобластозов. В основе теории цитогенеза ге-мобластозов положено учение о стволовых и полустволовых клетках-предшественницах кроветворения.

Многие вопросы происхождения солидных опухолей остаются пока еще спорными, поскольку имеется мало данных о клетках-предшественницах многих тканей. Предлагаются гипотетические схемы цитогенеза рака легкого, желудка, молочной железы и др.

В теории гисто- и цитогенеза опухолей следует выделить не­сколько основных аспектов.

  1. Трансформации может подвергаться только пролифериру-ющая соматическая клетка, т.е. поли- или унипотентные клетки-предшественницы .
  2. Опухолевая клетка способна повторять в извращенной фор­ме признаки дифференцировки (т.е. фенотип), заложенные в клетке-предшественнице, из которой она возникла.
  3. В опухолевых клетках извращение дифференцировки свя­зано с наличием блока дифференцировки. При наличии такого блока дифференцировки на уровне унипотентных клеток-предшественниц опухолевые клетки обладают минимальной стеноти­пической гетерогенностью. При наличии блока дифференциров­ки на уровне полипотентных клеток-предшественниц в неоплаз­ме выражена фенотипическая гетерогенность опухолевых кле­ток и появляются клетки-химеры с множественной дифференцировкой.

4. Дифференцировка опухолевых клеток зависит как от уров­ня малигнизации клетки-предшественницы, так и от уровня бло­ка дифференцировки. Доброкачественные опухоли развиваются при трансформации унипотентных клеток-предшественниц с низким блоком дифференцировки, поэтому они построены из зрелых клеточных элементов. Злокачественные опухоли харак­теризуются меньшим уровнем дифференцировки их клеток по сравнению с доброкачественными, что связывается с их развити­ем из полипотентных клеток-предшественниц и наличием высо­кого блока дифференцировки. Чем выше уровень малигнизации и уровень блока дифференцировки, тем менее дифференциро-ванна возникающая злокачественная опухоль.

В качестве гисто- и цитогенетических маркеров опухолевых клеток могут использоваться ультраструктурная организация опухолевой клетки, а также генные, хромосомные, антигенные и биомолекулярные маркеры, получившие название "опухоле­вые маркеры". В группу биомолекулярных опухолевых маркеров относят различные молекулы (факторы роста, рецеп­торы, онкобелки, адгезивные молекулы, интегриновые рецепто­ры), ферменты, белки промежуточных филаментов, рецепторов и адгезивных молекул.

ОБНОВЛЕНИЯ

ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

ПРЕДМЕТЫ

О НАС

«Dendrit» - информационный портал для медицинских работников, студентов медицинских ВУЗов, исследователей и пациентов.

Ваш источник новостей и знаний о здоровье.