ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

Физиология коры больших полушарий

   1. Эволюция строения и функций больших полушарий головного       мозга. Последствия их удаления у животных различных видов. Методы изучения функций больших полушарий. Особенности развития больших полушарий у детей.

Большие полушария — это филогенетически наиболее молодой отдел ЦНС, развивающийся из конечного мозга.

Кора — это поверхностный слой серого вещества больших полушарий, который состоит из нервных клеток с их отростками и промежуточной ткани (нейроглия, кровеносные и лимфатические сосуды).

Основными тенденциями в ходе эволюции мозга являются:

•             энкефализация (энцефализация) – увеличение размеров, массы, сложности строения больших полушарий;

•             кортиколизация – увеличение площади, массы, сложности строения коры больших полушарий. Кортиколизацию как эволюционную тенденцию можно подразделить на структурную и функциональную.

Структурное развитие коры идет с увеличением нервных элементов и возникновение многослойного строения коры ( у амфибий — 1 слой, у птиц — 3 слоя, у селовека — 6 слоев).

Параллельно происходит усовершенствование связей как в пределах самой коры, так и её связь с другими отделами ЦНС.

В процессе эволюции происходит увеличение площади поверхности коры за счет образования борозд и извилин и теперь она (S пов.) составляет примерно 2,5 м2.

В коре ядерный тип строения нижележащих отделов ЦНС сменяется экранным типом, а именно в коре клетки лежат в одной плоскости, а также увеличивается количество чувствительных нервных клеток по сравнению с двигательными (в спинном мозге соотношение чувствительных и двигательных нейронов составляет 15 : 1, а в коре — 20 : 1).

В процессе эволюции увеличивается ёмкость черепа, нарастает масса мозга, что не определяет умственных способностей, а имеет отношение к изменению массы тела( у слона m = 5 кг, отношение к массе тела составляет 1/500, у обезьян — 1/50, у человека — 1/40). Вес мозга у людей широко варьирует, но как уже отмечалось, умственные способности не зависят от массы мозга. Так были проведены измерения массы мозга у гениальных людей в разные периоды истории : Тургенев — 2012 г (самый большой мозг), Байрон — 1807 г, Бехтерев — 1720 г, Павлов — 1653 г, А. Франс — 1017 г.

Важным является соотношение между отдельными долями больших полушарий : затылочная доля у обезьян составляет 30-40%, у человека — 12%, нижние теменные доли 0,7% и 0,8%, лобные доли 10% и 20%.

В ходе эволюции происходит специализация центров и кортиколизация функций.

Для оценки степени эволюционного развития мозга используют относительную массу головного мозга (т.е. соотношение массы головного мозга и массы тела), выводимое из следующей формулы:

М тела = К х М мозга 2/3

                где К – коэффициент энкефализации (энцефализации) равный у грызунов 0,06; у шимпанзе бонобо –  0,3; а у человека – 1.

Разновидности коры больших полушарий по их филогенетическому возрасту:

•             Архиокортекс (древнейшая кора). Обонятельные луковицы, обонятельные тракты, обонятельные бугорки.

•             Палеокортекс (старая кора). Структуры, расположенные на медиальной поверхности височной доли (гиппокамп, парагиппокампальная извилина, крючок).

•             Неокортекс (новая кора). Покрывает большие полушария снаружи (плащ).

Функции коры БП.

1. сенсорная — отвечает за восприятие сигналов из окружающей среды и внутренней среды, их обработка, ибо каждый         анализатор имеет корковую часть.

2. условно-рефлекторная — отвечает за осуществление условных рефлексов.

3. психическая — отвечает за возникновение ощущений, восприятий, за способность к мыслительной деятельности, абстрактное мышление и запоминание, осознание сигналов из окружающей среды, осознание личностью взаимоотношения с окружением, является структурной основой осознания и интеллекта, за психические свойства личности : интересы, темперамент, характер и т. д.

Последствия удаления больших полушарий у животных:

•             У рыб после удаления больших полушарий наблюдаются нарушения в виде меньшей подвижности и активности при добывании пищи.

•             У земноводных (лягушек) большие полушария более развиты, но после их удаления отмечается только меньшая подвижность.

•             Птицы после удаления больших полушарий могут длительное время находиться в неподвижном состоянии. Способны клевать несъедобные предметы (например, осколки стекла). Голуби без больших полушарий утрачивают половой инстинкт. Сохраняют способность летать.

•             У собак после удаления больших полушарий сохраняется способность к передвижению, но нарушается зрение, слух при сохранении ориентировочных реакций. Большую часть времени находятся в состоянии сна, просыпаясь только для приема пищи и естественных отправлений. Все выработанные условные рефлексы исчезают.

•             Высшие обезьяны после удаления больших полушарий утрачивают способность к передвижению и погибают через 3 недели - 2 месяца.

Основные методы исследования функций больших полушарий:

•             Метод удаления (экстирпации - частичное или полное удаление коры, сопровождаемое наблюдениями за изменениями функций; аспирации)

•             Метод условных рефлексов

•             Электрофизиологический (регистрация биопотенциалов)

•             Нейрохимический

•             Метод клинико-паталогоанатомического исследования (позволяют сопоставить прижизненные изменения функций в связи с заболеваниями                  и  последующим морфологическим обследованием после смерти)

•             Методы компьютерной нейровизуализации (англ. neuroimaging techniques)

•             - рентгеновская томография

•             - ЯМР томография (томография с использованием ядерно-магнитного резонанса)

•             - ПЭТ (позитронно-эмиссионная томография - определяет радиоволны, которые испускают ядра атомов водорода при помещении обследуемого в сильное магнитное поле, компьютер выдает прижизненное изображение структур мозга)

•             Термография

•             Метод радиоизотопного картирования…

Возрастные аспекты физиологии коры больших полушарий:

Средний вес мозга новорожденного составляет 382 гр. (колебанияот 350 до 400 гр.). В возрасте 1 года – 680-750 гр., в 4 года – 1100-1205 гр., в 7-10 лет – 1300-1390 гр. Вес мозга к 9 месяцам жизни удваивается, к 3 годам – утраивается. Максимального веса мозг достигает на третьем десятилетии жизни. Поверхность мозга новорожденного составляет 10-12% поверхности мозга взрослого человека, в возрасте 2-4 месяцев –  50%. Особенно быстро увеличиваются размеры неокортекса. В частности это относится к таким полям, как 6, 10, 19, 46. Раньше формируются эфферентные системы (элементы) и позднее - афферентные.

2. Цитоархитектоника коры больших полушарий. Функции нейронов.

Кора имеет толщину от 1,5 до 3 мм, количество клеток составляет 14 -15 млрд. Клетки классифицируются по морфологическим признакам на основные типы: пирамидные, веретенообразные, звездчатые, зернистые. Функционально нейроны подразделяются на сенсорные, моторные и промежуточные (вставочные). Пирамидные и веретенообразные клетки выполняют эфферентную функцию, а звездчатые — афферентную. Связи между клетками образуются с помощью аксосоматических, аксодендритых синапсов, среди которых последние преобладают.

Клетки располагаются послойно, в 6 слоев (лишь кора гиппокампа имеет 3 слоя).

Послойная организация неокортекса:

I.             Молекулярный (плексиформный). В этом слое множество волокон, образующих густое параллельное поверхности сплетение, но мало клеток.

II.            Наружный зернистый (наружный гранулярный). В нем густо расположены мелкие нейроны самой различной формы, среди которых находятся малые пирамидные клетки. Нервные волокна здесь ориентированы преимущественно параллельно поверхности коры.

III.          Наружный пирамидный. Он состоит в основном из пирамидных нейронов средней величины; более крупные клетки лежат в нем глубже.

IV.          Внутренний зернистый (внутренний гранулярный). В этом слое диффузно расположены мелкие нейроны различной величины (звездчатые клетки), между которыми проходят плотные пучки параллельных поверхности коры волокон.

V.           Внутренний пирамидный. Он состоит в основном из средних и крупных пирамидных клеток; например, гигантские пирамидные клетки Беца в прецентральной извилине.

VI.          Слой веретеновидных (фузиформных) клеток. Здесь (VI a) находятся преимущественно веретеновидные нейроны. Глубинная часть этого слоя (VI b) переходит в белое вещество головного мозга.

2 и 4 слои выполняют чувствительную функцию, 5 и 6 слои — двигательную эфферентную, 3 слой важен для внутрикорковых связей ассоциативных путей. Выраженность слоев в разных отделах КБП различна. На основании этого Бродман выделил 11 зон и 52 поля.

Функциональной единицей коры является колонка клеток, которая ограничена в вертикальном направлении и воспринимает определенный вид раздражителя. Диаметр колонки равен примерно 500 мкм. Работа происходит по вероятностно-статистическому принципу.  Вероятностный принцип говорит об участии определенного количества нейронов, а количество участвующих нейронов необходимо для выполнения определенной функции (статистический принцип).

Есть клетки глии (в 10 раз больше, чем нейронов), которые выполняют следующие функции : участие в процессах обмена веществ в коре, регуляция кровотока внутри мозга, регуляция возбуждений нейронов за счет нейросекреции, участие в хранении информации, участие в реакциях мозга на возбуждение вредных факторов.

3. Локализация функций в коре больших полушарий. Проекционные (первичные), вторичные и ассоциативные зоны, их физиологическая роль. Основные поля Бродмана.

Концепции функционирования больших полушарий:

•             Теория локализиционизма – каждое поле коры и каждый участок больших полушарий выполняют строго определенные функции.

•             Теория эквипотенционализма – нет участков коры и отделов больших полушарий, выполняющих конкретные функции. Функции равномерны распределены по коре больших полушарий.

•             Теория динамической локализации функций (по И.П. Павлову) – функции могут не иметь четкой привязки к структурам и могут динамически выполняться различными отделами больших полушарий.

•             Теория гибких и жестких звеньев организации мозговых систем обеспечения деятельности (по Н.П. Бехтеревой).

1861 г. - ученый Брока обнаружил в нижней трети лобной извилины левого полушария двигательный центр речи, поражение которого приводит к утрате способности говорить.

1870 г. - Фрис обнаружил в лобной доле локализацию двигательной функции передней центральной доле, поражение которой вызывает паралич.

1874 г. - психиатр Верьшке показал, что поражения задней трети височной извилины левого полушария происходит нарушение понимания речи, однако сохраняется способность говорить.

Современные представления локализации функций в коре:

   а) первичные (проекционные) зоны.

   б) вторичные зоны (обработка сигналов)

   в) ассоциативные (третичные) зоны (зоны перекрытия первичных зон).

Первичная зона представляет собой зону проекционных чувствительных путей в КБП. Идет по 3-м нейронам (1 — в спинном ганглии, 2 — ствол мозга, 3 — зрительный бугор). Здесь и формируется ощущение в соответствии с той модальностью раздражителя, который воспринимаем. Оно формируется в форме образа.

Вторичные зоны окружают первичную зону и здесь происходит опознание раздражителя на основе сопоставления со следами прошлого опыта (храниться в памяти).

Третичная зона образована зонами перекрытия вторичных зон, относящихся к разным анализаторам или сенсорных систем. Наибольшего развития в этих зонах достигли 2 и 3 слои КБП. Для этих зон характерно наличие полисенсорных нейронов, реагирующих на разные раздражители. Эти зоны устанавливают межанализаторные связи, которые позволяют оценивать всю совокупность свойств  предметов. Этим зонам принадлежат следующие свойства : тозия — способность узнавать предметы (патология — агнозия), праксия — приобретенный заученный двигательный навык. Поражение ассоциативных зон сопровождается утратой способности выполнить заученные движения — апраксия.

Функции конечного мозга.

  Конечный мозг делится на лобную, затылочную, теменную и височную доли. Каждая доля делится на мелкие участки. Выделяют лимбическую долю : это участки лобной, теменной и височной долей, окружающих промежуточный мозг. В глубине сильвиевой борозы, в глубине полушария лежит островок и он прикрывается краями лобной, височной и теменной долей. Он связан с инервацией внутренних органов. Лобная доля связана с выполнением произвольных движений, с координацией двигательных механизмов речи, языковым общением, творческим или критическим мышлением.

   Двигательные функции регуляции произвольных движений заложены в передней центральной извилине (4 поле по Бродмену). В этой извилине имеется представительство частей тела (гомункумос). Именно для этой извилины характерно развитие 5-го слоя, где находятся большие пирамидные клетки. Они дают начало к нисходящим пирамидным путям, которые идут к моторным нейронам серого вещества СМ. Пути перекрещиваются, двигательные команды коры передаются на передние рога (моторные нейроны). Каждое полушарие отвечают за движение противоположной стороны тела. Поражение первого нейрона сопровождается центральным параличом на противоположной стороне тела, но тонус мыщц сохраняется. Поражение второго нейрона также ведет к параличу, но будет наблюдаться атрофия мышц и отсутствие спинальных рефлексов.

   Премоторная зона расположена в 4 поле. Она связана с экстрапирамидной  системой. 8 зона  отвечает за глазодвигательные реакции. Передняя часть лобной доли связана с творческим мышлением. Поражение этого отдела вызывают резкие изменения личности (нет инициативы, желания добиваться  поставленных целей, они находятся в состоянии детской удовлетворенности, нет никаких проблем, интересуются только повседневными мелочами и не могут составить планы на будущее, они утрачивают критическую самооценку, допускают глупые шутки, у таких людей нарушаются процессы поведения при удалении лобной доли).

   В лобной доле 44 поля находится речедвигательный центр. При раздражении зоны  возникает произношение звуков, но не слов.

   Теменная доля связана с соматической чувствительностью, с памятью, относящейся к речи, обучению и простой ориентации. Чувствительные функции представлены в задней центральной извилине (1, 2, 3 поля). Перерезка жтой зоны приводит к выпадению разных видов чувствительности.

   Дальше выделяют 5 и 7 поля. Они дают возможность провести оценку веса, свойств поверхности, размеров и форм предмета. Нижняя теменная доля связана с пониманием речи (центр Вернике).  Теменная доля передает чувство 3-х мерного пространства и восприятия схемы тела. Поражение сопровождается агнозией. Больные утрачивают способность понимать буквы и цифры, нарушается восприятие схемы тела. При полном нарушении схемы тела больные полностью отрицают принадлежность одной половины тела к другой.

   Височная доля связан с восприятием слуховых ощущений и участвует в звуковом контроле речи. Ей принадлежит роль в оценке пространства и она участвует в памяти. Первичная зона — это 41поле, 42 поле - вторичная зона, где происходит оценка воспринимаемых звуков, а 22 поле участвует в функции понимания слов и при его поражении возникает утрата способности понимать слова.  Височная доля определяет вестибулярную чувствительность, раздражение задних отделов височной доли вызывает головокружение. При раздражении других отделов височной доли больные слышат голоса, которые были в прошлом, возникают акустические и зрительные галлюцинации. При повреждении височной доли  возникает неправильное толкование мира. Височная доля отвечает за сновидения.

   Затылочная доля связана со зрительной функцией. Вдоль шпорной борозды располагается первичная зрительная зона (17 поле). Опознание предмета осуществляется 18 полем, окружающим 17 поле. 19 поле, граничащее с теменной долей, принимает участие в оценке значения увиденного. Зрительная кора, организованная по колоночному типу, состоит из вертикальных колонок. В них обнаруживаются простые клетки, реагирующие на точечные световые раздражения, и сложные клетки, воспринимающие вертикаль, горизонталь и треугольные образы. Внутренний зернистый слой содержит простые клетки, а сложные клетки — в наружном зернистом слое. Сложные клетки сосредоточены  в 18-19 полях.

   Лимбическая доля включает подмозолистую область, поясная извилина, перешеек, парагиппокампальную извилину, кусочек гиппкампа и миндалину.  В неё идет информация от обоняния (анализатор в 34 поле), вкусовой анализатор в  43 поле. В целом эта доля отвечает за поведенческие реакции организма в ответ на раздражение внешней среды, но в соответствии с  состоянием внутренней среды.  Эти реакции направлены на сохранение особи. Миндалина отвечает за сохранение  особи, перегородка и гиппокамп — за сохранение вида. Раздражение миндалины  вызывает жевание, глотание и т. д. Поражение миндалин  - животное делается послушным... Раздражение перегородки вызывает половое (родительское) поведение. Перерезка гиппокампа сопровождается приступами ярости.               

Критерии классификации различных полей коры:

•             Цитоархитектонические

•             Миелоархитектонические

•             Ангиоархитектонические

•             Хемоархитектонические

•             Функциональные

Выраженность слоев в разных отделах КБП различна. На основании этого Бродман выделил 11 зон и 52 поля.

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций

2-я зона - чувствительная - участки коры головного мозга сзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. 1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от рецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота). при разрушении 17 поля выпадает видение окружающей среды, которое проецируется на соответствующие участки сетчатки глаза. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля Бродмана - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я - зона слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков. При разрушении 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.

7-я зона - речедвигательная зона - у большинства людей (праворуких) располагается в левом полушарии.

Эта зона состоит из 3-х отделов.

Речедвигательный центр Брока - расположен в нижней части лобных извилин - это двигательный центр мышц языка.

Сенсорный центр Вернике - расположен в височной зоне - связан с восприятием устной речи. .

Центр восприятия письменной речи располагается в зрительной зоне коры головного мозга.

4. Роль лобных долей в формировании двигательных команд и интеграции сложных форм поведения. Функциональная межполушарная ассиметрия.

Гранулярная (зернистая) кора лобной доли включает премоторную, полюсную и орбитальную кору и обладает хорошо выраженными зернистыми слоями. При поражении зернистой коры возникают резкие изменения личности, которые проявляются в потере инициативы, достижения цели, концентрации внимания, нарушается критическая оценка своих действий и незначительно страдает интеллект. Больные находятся в состоянии самоудовлетворенности, эйфории, интересуются только повседневными мелочами и не могут составить плана действий.

                                Характерные изменения наблюдаются в эмоциональной сфе¬ре. Удаление или поражение лобных долей вызывает умиротворение и безразличие. Больные становятся безразличными даже к собственным страданиям. При поражении орбитальной коры наблюдаются изменения в характере и поведении: утрачивается чувство такта и скромности, что приводит к затруднениям в социальных взаимодействиях.

Лобная доля связана с выполнением произвольных движений, с координацией двигательных механизмов речи, языковым общением, творческим или критическим мышлением.

Двигательные функции регуляции произвольных движений заложены в передней центральной извилине (4 поле по Бродмену). В этой извилине имеется представительство частей тела (гомункумос). Именно для этой извилины характерно развитие 5-го слоя, где находятся большие пирамидные клетки. Они дают начало к нисходящим пирамидным путям, которые идут к моторным нейронам серого вещества СМ. Пути перекрещиваются, двигательные команды коры передаются на передние рога (моторные нейроны). Каждое полушарие отвечают за движение противоположной стороны тела. Поражение первого нейрона сопровождается центральным параличом на противоположной стороне тела, но тонус мыщц сохраняется. Поражение второго нейрона также ведет к параличу, но будет наблюдаться атрофия мышц и отсутствие спинальных рефлексов.

Премоторная зона расположена в 4 поле. Она связана с экстрапирамидной  системой. 8 зона  отвечает за глазодвигательные реакции. Передняя часть лобной доли связана с творческим мышлением. Поражение этого отдела вызывают резкие изменения личности (нет инициативы, желания добиваться  поставленных целей, они находятся в состоянии детской удовлетворенности, нет никаких проблем, интересуются только повседневными мелочами и не могут составить планы на будущее, они утрачивают критическую самооценку, допускают глупые шутки, у таких людей нарушаются процессы поведения при удалении лобной доли).

В лобной доле 44 поля находится речедвигательный центр. При раздражении зоны  возникает произношение звуков, но не слов.

Межполушарная асимметрия психических процессов — функциональная специализированность полушарий головного мозга: при осуществлении одних психических функций ведущим является левое полушарие, других — правое.

Одним из основных принципов функционирования полушарий большого мозга является асимметрия. Межполушарная асимметрия как одна из важных особенностей функционирования высших отделов мозга в основном определяется двумя моментами: 1) асимметричной локализацией нервного аппарата второй сигнальной системы и 2) доминированием правой руки как мощного средства адаптивного поведения человека. Этим и объясняется, что первые представления о функциональной роли межполушарной асимметрии возникли лишь тогда, когда удалось установить локализацию нервных центров речи (моторного — центра Брока и сенсорного — центра Вернике в левом полушарии). Перекрестная проекция видов сенсорной чувствительности и нисходящих пирамидных путей — регуляторов моторной сферы организма — в сочетании с левосторонней локализацией центра устной и письменной речи определяет доминирующую роль левого полушария в по ведении человека, управляемого корой больших полушарий. Полученные экспериментальные данные подтверждают представление о доминирующей роли левого полушария мозга в реализации функций второй сигнальной системы, в мыслительных операциях, в творческой деятельности с преобладанием форм абстрактного мышления. В общем виде можно считать, что люди с левополушарным доминированием относятся к мыслительному типу, а с правополушарным доминированием — к художественному.

 По данным современной нейро- и психофизиологии, левое полушарие большого мозга у человека специализируется на выполнении вербальных символических, правое — на обеспечении и реализации пространственных, образных функций. В этом проявляется важнейшая форма функциональной асимметрии мозга — асимметрия психической деятельности. Повреждения, дисфункция левой височной области коры приводят обычно к существенным нарушениям в моторной реализации функции языка: наблюдаются элементы заикания, нечеткое произношение и т. д.; повреждения в правой височной области приводят к нарушению в четкости образного восприятия и представления внешних стимулов, явлений, предметов; при стимуляции этой зоны у больных возникают обычно очень яркие образы, воспоминания. Установлено, что правое полушарие быстрее обрабатывает информацию, чем левое. Результаты пространственного зрительного анализа раздражителей в правом полушарии передаются в левое полушарие в центр речи, где происходят анализ смыслового содержания стимула и формирование осознанного восприятия.

 Человек с преобладанием правого полушария предрасположен к созерцательности и воспоминаниям, он тонко и глубоко чувствует и переживает, но медлителен и малоразговорчив. Доминирование левого полушария ассоциируется у человека с большим словарным запасом, активным его использованием, с высокой двигательной активностью, целеустремленностью, высокой способностью экстраполяции, предвидения, прогнозирования. Отмечены определенные различия и в типах мыслительных операций (умозаключений) у людей с доминированием правого или левого полушария (В. Л. Бианки). В процессах обучения, познания правое полушарие реализует процессы дедуктивного мышления (вначале осуществляются процессы синтеза, а затем анализа). Левое полушарие преимущественно обеспечивает процессы индуктивного мышления (вначале осуществляется процесс анализа, а затем синтеза). Некоторые различия межполушарной асимметрии при зрительном восприятии приведены в табл. 15.1.

 В исследованиях установлены феноменологические особенности межполушарной асимметрии в динамике образования условного рефлекса, формирования определенного навыка. Несмотря на то что межполушарное взаимодействие препятствует совершенствованию, укреплению условного рефлекса, на начальных стадиях это взаимодействие принимает определенное участие в образовании условного рефлекса. При этом благодаря активации тормозных влияний симметричных зон коры через мозолистое тело стимулируется образование условно-рефлекторной связи; в случае закрепления рефлекса доминирующее полушарие мозга тормозит проявления условно-рефлекторной памяти (Г. А. Кураев).

 Синтетическая доминантная модель межполушарных взаимоотношений базируется на принципах симметрии и доминанты (рис. 15.9). В проекционных зонах коры преимущественно реализуется принцип гомотопичности, а в ассоциативных — гетеротопичности (В. Л. Бианки). Главная роль транскаллозальных коммуникаций в проекционных зонах заключается в обмене сенсорной информацией, а в ассоциативных — в регуляции уровня возбудимости симметричных областей. Гомотопические связи в корковых структурах образуют как бы канву, на которой внутриполушарные влияния как бы выписывают свой асимметрический узор. В формировании внутрицентрального взаимодействия симметричных зон мозга важную роль играют процессы цитохимической дифференцировки, модулирующие сенсорную информацию. Рост и развитие нервных волокон в мозге, а их объединение в цепи находятся под генетическим контролем с использованием сложных химических кодов (Сперри).

 Функциональная межполушарная асимметрия, реализующая в своей динамике принцип доминанты, рассматривается как саморегулирующаяся система с обратной тормозной связью. Эта система состоит из связанных между собой первичных и вторичных доминантных очагов, образующихся и поддерживающихся за счет восходящих внутриполушарных и межполушарных потоков возбуждения, а также гуморальных влияний. При этом в доминирующем полушарии под влиянием восходящих внутриполушарных и межполушарных, а также гуморальных воздействий формируется стойкий очаг повышенной возбудимости, способный к суммированию возбуждения, обладающий известной инерционностью и оказывающий тормозящее действие на недоминирующее полушарие

 Передача межполушарных влияний осуществляется главным образом по мозолистому телу, но определенное значение имеют и экстракаллозальные пути. В соответствии с индуктивно-дедуктивной гипотезой правое полушарие осуществляет дедуктивную обработку информации, а левое — индуктивную (в правом полушарии доминируют процессы синтеза, а в левом — процессы анализа). В общем виде схема межполушарного взаимодействия сводится к следующей последовательности аналитико-синтетической деятельности полушарий большого мозга. Сначала правое полушарие посредством дедуктивного метода (от общего к частному, от синтеза к анализу) оперативно оценивает ситуацию, затем левое полушарие на основе индуктивного метода (от частного к общему, от анализа к синтезу) вторично формирует представление об общей закономерности и разрабатывает соответствующую стратегию поведения. Результаты этого процесса передаются в противоположное полушарие в основном по системе волокон мозолистого тела.

 

Как образно подчеркивает В. Л. Бианки, левое полушарие обладает «законодательной властью, а правое — исполнительной», левое полушарие определяет цели, а правое реализует их выполнение.

 

5. Электрические явления в коре больших полушарий. Электроэнцефалограмма (ЭЭГ), Классификация ритмов ЭЭГ. Особенности ЭЭГ у детей.

Разновидности биоэлектрической активности  головного мозга:

•             Спонтанные формы биоэлектрической активности (импульсная активность нейронов, электроэнцефалограмма, сверхмедленная биоэлектрическая активность)

•             Вызванные формы биоэлектрической активности (вызванные потенциалы, потенциалы связанные с событиями, условное негативное отклонение)

Основы классификации ритмов электроэнцефалограммы (ЭЭГ):

Традиционная ЭЭГ (диапазон частот 0,5-100 Гц):

•             Гамма-ритм (частота более 40 Гц, амплитуда менее 15 мкВ);

•             Бета-ритм (частота 14-40 Гц, амплитуда менее 25 мкВ);

•             Альфа-ритм (частота 8-13 Гц, амплитуда 10-150 мкВ);

•             Тета-ритм (частота 4-7 Гц, амплитуда 75-150 мкВ);

•             Дельта-ритм (частота 0,5-3 Гц, амплитуда свыше 100 мкВ).

Сверхмедленная биоэлектрическая активность

(диапазон частот менее 0,5Гц):

•             Секундные или дзета-волны (частота 0,1-0,5 Гц, период от 2 до 10 секунд, амплитуда менее десятки и сотни мкВ);

•             Многосекундные или тау-волны (частота 0,0167-0,1 Гц, период от 10 до 60 секунд, амплитуда сотни мкВ)

•             Минутные и многоминутные или эпсилон-волны (частота менее 0,0167 Гц, период от 1 минуты и более, амплитуда сотни мкВ, единицы и десятки мВ)

•             Относительно постоянный потенциал милливольтового диапазона или омега-потенциал (устойчив в течение часов, амплитуда ± 110 мВ)

•             Возрастные аспекты физиологии коры больших полушарий

•             Ритмы ЭЭГ новорожденного разнообразны и нерегулярны, характерна низкоамплитудная активность с частотой 5-7 Гц. Доминирует активность затылочных долей, в ответ на сенсорные стимулы (звуковые, световые, тактильные) ЭЭГ уплощается.

•                            

•                             С возрастом происходит усложнение ЭЭГ, в возрасте 5-6 месяцев ЭЭГ становится ритмичной.

 

6. Вызванные потенциалы в коре больших полушарий, их происхождение. Первичный и вторичный ответы.

Вызванные потенциалы - колебания биоэлектрических потенциалов в поверхностной электроэнцефалограмме или в записи электрической активности других образований мозга, происходящие в ответ на импульсы, поступающие по восходящим или ассоциативным нервным путям. Различают: первичный В. п., или первичный ответ (ПО), с коротким латентным (скрытым) периодом, возникающий через 10—20 мсек после посылки импульсов. Он регистрируется в ограниченной зоне коркового представительства раздражаемого Анализатора (например, после раздражения глаза вспышкой света ПО возникает в затылочной коре мозга в виде одно- или двухфазного колебания биопотенциала, рис. 1, А); вторичные В. п., или вторичные ответы (ВО), с большими латентными периодами (от 30 до 200 мсек) и более широкой областью распространения (рис. 1, Б). ВО возникают сначала в той же зоне мозга, что и ПО, отличаются более сложной формой и многофазностью. Одновременно или позднее наблюдаются ещё более сложные по форме ВО в других пунктах коры — так называемые локальные реакции, или даже по всей коре мозга — генерализованные реакции.

ПО — алгебраическая сумма начальных изменений биопотенциалов в группе корковых нейронов в ответ на первый залп импульсов, поступающий в кору от рецептора по наиболее коротким специфическим (лемнисковым) нервным путям. Причины возникновения локальных ВО — следовые процессы, развивающиеся в тех же корковых нейронах, и распространение возбуждения (его иррадиация) по ассоциативным нервным путям на ближайшие и более отдалённые нейроны. Считается, что генерализованные ВО возникают при поступлении импульсов в кору мозга по неспецифическим нервным путям (из ретикулярной формации, лимбической системы).

На основании регистрации ПО созданы карты представительства в коре мозга зрительных, слуховых, кожных и других рецепторов. Возникновение ПО и ВО тесно связано с переработкой получаемой организмом информации и замыканием условнорефлекторных связей в нервной системе. Регистрация В. п. применяется в клинике для уточнения локализации в мозгу патологического процесса.

ОБНОВЛЕНИЯ

ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

ПРЕДМЕТЫ

О НАС

«Dendrit» - информационный портал для медицинских работников, студентов медицинских ВУЗов, исследователей и пациентов.

Ваш источник новостей и знаний о здоровье.