Пищеварение

1. Значение процессов пищеварения в функции пищеварительного тракта. История развития физиологии пищеварения. Роль И.П. Павлова в создании учения о пищеварении и введение методов хронического эксперимента при изучении функций пищеварительного тракта.

Организм человека и животного – это открытая термодинамическая система, которая постоянно обменивается веществом и энергией с окружающей средой. Организм требует пополнения энергетического и строительного материала. Это необходимо для работы, поддержания температуры, восстановления тканей. Эти материалы человек и животные получает из окружающей среды в виде животного или растительного происхождения. В пищевых продуктах в разных соотношениях питательные вещества – белки, жиры. Питательные вещества – это крупные полимерные молекулы. Пища также содержит воду, минеральные соли, витамины. И хотя эти вещества не являются источником энергии, они являются очень важными компонентами для жизнедеятельности. Питательные вещества из пищевых продуктов не могут быть сразу усвоены; для этого необходима обработка питательных веществ в ЖКТ, чтобы продукты переваривания могли быть использованы.

  Длина пищеварительного тракта равна примерно 9 м. В состав пищеварительной системы входит ротовая полость, глотка пищевод, желудок, тонкая и толстая кишка, прямая кишка и анальный канал. Имеются добавочные органы ЖКТ  - они включают язык, зубы, слюнные железы, поджелудочную железу, печень и желчный пузырь.

Попытки изучить процессы пищеварения начинаются ужу в 18 веке, так например Реамюр пытался получить желудочный сок, путем закладывание губки подвязанной на ниточке в желудок и получали пищеварительный сок. Были попытки вживлять стеклянные или металлические трубочки в протоки желез, но они довольно быстро выпадали и присоединялась инфекция. Первые клинические наблюдения а человеке были проведены при ранении желудка. В 1842 году московский хирург Басовналожил фистулу на желудок и закрывалась пробкой вне процессов пищеварения. Эта операция позволяла получать желудочный сок но недостатком было то, что он был смешан с пищей. Позднее в лаборатории Павлова эта операция была дополнена перерезкой пищевод ан шее. Такой опыт называют опытом мнимого кормления, а уже после кормления пережеванная пища осуществляется ее переваривание.

   Английский физиолог Гейденгайн предложил выделять маленький желудочек из большого, это позволяло получать чистый желудочный сок, несмешанный с пищей, но недостатком операции – разрез – перпендикулярно большой кривизне – это пересекало нерв – вагус. На маленький желудочек могли действовать только гуморальные факторы.

   Павлов предложил делать параллельно большой кривизне, вагус не перерезался, он отражал весь ход пищеварения в желудке с участием и нервных и гуморальных факторов. И.П. Павлов поставил задачей изучать функцию пищеварительного тракта максимально приближенной к нормальным условиям и Павлов разрабатывает методы физиологической хирургии осуществляя разнообразные операции на животных,  которые в последующим помогли в изучении пищеварения. В основном операции были направлены на наложение фистул.

  Фистула – искусственное сообщение полости органа или протока железы с окружающей средой для получения содержимого и после операции животное поправлялось. Дальше следовала восстановление, длительное питание.

   В физиологии проводится острый опыты – однократно под наркозом и хронический опыт – в условиях максимально приближенным к нормальным – с наркозом, без болевых факторов – это дает более полное представление о функции. Павлов разрабатывает фистулы слюнных желез, операцию маленького желудочка, эзофаготомию, желчного пузыря и протока поджелудочной железы.

   Первая заслуга Павлова в пищеварении состоит в разработке опытов хронического эксперимента. Далее Иван Петрович Павлов установил зависимость качества и количество секретов от вида пищевого раздражителя.

 В третьих – приспособляемость желез к условиям питании. Павлов показал ведущее значение нервного механизма в регуляции пищеварительных желез. Работы Павлова в области пищеварения были обобщены в его книге «О работе важнейших пищеварительных желез» В 1904 году Павлов был удостоен Нобелевской премии. В 1912 году университет в Англии Ньютон, Байрон избирают Павлова почетным доктором кембриджского университета и на церемонии посвящения произошел такой эпизод, когда студенты Кембриджа спустили игрушечную собачку с многочисленными фистулами.

 

2. Пищеварение в полости рта. Слюнные железы, состав и значение слюны в пищеварении. Приспособляемость деятельности желез к качеству пищи. Методика изучения функций слюнных желез. Особенности функций слюнных желез у детей.

Слюна образуется тремя парами слюнных желез – околоушная, расположенная между челюстью и ухом, подчелюстная, расположенная под нижней челюстью, и подъязычная. Мелкие слюнные железы – работают постоянно в отличие от крупных.

   Околоушная железа состоит только из серозных клеток с водянистым секретом. Подчелюстная и подъязычная железывыделяют смешанный секрет, т.к. включают в себя и серозные и слизистые клетки. Секреторной единицей слюнной железы –саливон, в который входит ацинус, слепо заканчивающийся расширение и образован ацинарными клетками, ацинус, затем открывается во вставочный проток, который переходит в исчерченный проток. Клетки ацинуса секретируют белки и электролиты. Сюда же поступает и вода. Затем, коррекция содержания электролитов в слюне осуществляется вставочными и исчерченными протоками. Секреторные клетки еще окружены миоэпителиальными клетками, способными к сокращению и миоэпителиальные клетки сокращаясь выдавливают секрет и способствуют его продвижению по протоку. Слюнные железы получаю обильное кровоснабжение, кроваток в них в 20 раз больше чем в других тканях. Поэтому эти небольшие по размеру органы обладают довольно мощной секреторной функцией. За сутки вырабатываются от 0,5 – 1,2 л. слюны.

 

Слюна.

  • Вода – 98,5%- 99 %
  • Плотный остаток 1-1,5%.
  • Электролиты – К, НСО3, Na, Cl, I2

Слюна выделяемая в протоках гипотонична в сравнении с плазмой. В ацинусах происходит выделение электролитов секреторными клетками и они содержатся в таком же количестве как и в плазме, но по мере движения слюны по протокам происходит поглощение ионов натрия, хлора, количество ионов калия и бикарбоната, становится больше. Слюна характеризуется преобладанием калия и бикарбоната. Органический состав слюны представлен ферментами- альфа-амилаза(птиалин), язычная липаза – вырабатывается железами, располагающимися в корне языка.

Слюнные железы содержат каликреин, слизь, лактоферин – связывают железо и способствует уменьшению бактерий, гликопротеины лизоцим, иммуноглобулины – А,М, антигены А, Б, АБ, 0.

   Слюна выводится по протокам – функции - смачивание, формирование пищевого комка, глотаний. В ротовой полости – начальный этап расщепления углеводов и жиров. Полного расщепления не может происходить т.к. короткое время нахождение пищи в пищевой полости. Оптимум действия слюны – слабощелочная среда. PН слюны = 8. Слюна ограничивает рост бактерий, способствует заживлению повреждений, отсюда зализывание ран. Слюна нам нужна для нормальной функции речи.

   Фермент амилаза слюны осуществляет расщепление крахмала до мальтозы и мальтотриозы. Амилаза слюны сходна с амилазой поджелудочного сока, который также расщепляет углеводы до мальтозы и мальтотриозы. Мальтаза и  изомальтаза, расщепляет эти вещества до глюкозы.

Липаза слюны начинает расщеплять жиры и ферменты продолжают свое действие в желудке, пока не сменится значение рН.

 

3. Регуляция секреции слюнных желез. Безусловные и условные рефлексы.

 Регуляция сляноотделения осуществляется парасимпатическими и симпатическими нервами, и при этом слюнные железы регулируются только рефлекторно, т. к. для них не характерен гуморальный механизм регуляции. Выделение слюнным может осуществляться с помощью безусловных рефлексов, которые возникают при раздражение слизистой оболочки полости рта. При этом могут быть пищевые раздражители и непищевые.

   Механическое раздражение слизистой оболочки тоже влияет слюноотделение. Слюноотделение может возникнут на запах, вид, воспоминание вкусной пищи. Слюноотделение формируется при тошноте.

Торможение слюноотделения наблюдается во время сна, при утомлении, при страхе и при обезвоживание организма.

  Слюнные железы получают двойную иннервацию от автономной нервной системы. Они иннервируются парасимпатическим и симпатическим отделом. Парасимпатическую иннервацию осуществляют 7 и 9 пары нервов. В них находятся 2 слюноотделительных ядра – верхнее -7 и нижнее – 9. Седьмая пара иннервируют подчелюстную и подъязычную железы. 9 пара – околоушная железа. В окончаниях парасимпатических нервов происходит выделение ацетилхолина и при действии ацетилхолина на рецепторы секреторных клеток через G-белки происходит иннервация вторичного посредника инозитол-3-фосфата, а он увеличивает содержания кальция внутри. Это приводит к увеличению секреции слюны бедной по органическому составу – вода + электролиты.

  Симпатические нервы достигают слюнных желез через верхний шейны симпатический ганглий. В окончаниях постганглионарных волокон происходит выделение норадреналина, т.е. секреторных клетки слюнных желез имеют адренорецепторы. Норадреналин вызывает активацию аденилатциклазы с последующим образованием циклического АМФ и циклический АМФ усиливает образование протеинкиназы А, которая необходима для синтеза белка  и симпатические влияния на слюнные железы увеличивают секрецию.

    Слюна с  большой вязкостью с большим количеством органических веществ. В качестве афферентного звена возбуждения слюнных желез это будут участвовать нервы, которые обеспечивают общую чувствительность. Вкусовая чувствительность передней трети языка – лицевой нерв, задняя треть – языкоглоточный. Задние отделы еще имеют иннервацию от блуждающего нерва. Павлов показал, что секреция слюны на отвергаемые вещества, а попадание речного песка, кислот, других химических веществ, происходит большое выделение слюны, именно жидкой слюны. Слюноотделение зависит также от раздробленности пищи. На пищевые вещества дается меньшее количество слюны но с большим содержанием фермента.

 

4. Пищеварение в желудке. Железистые клетки желудка. Желудочный сок и его состав.

   Желудок является отделом пищеварительного тракта, Ге пища задерживается от 3 до 10 часов для механической и химической обработки. Небольшое количество пищи переваривается в желудке, всасывательная площадь тоже не велика. Это резервуар для запасания пищи. В желудке мы выделяем дно, тело, пилорический отдел. Содержимое желудка ограничивается от пищевода кардиальным сфинктером. При переходе пилорического отдела в 12перстную кишку. Там находится функциональный сфинктер.

 

Функция желудка

  1. Депонированеи пищи
  2. Секреторная
  3. Моторная
  4. Всасывательная
  5. Экскреторная функция. Способствует удалению мочевины, мочевой кислоты, креатина, креатинина.
  6. Инкреторная функция – образование гормонов. Желудок выполняет защитную функцию

 

На основании функциональных особенностей слизистую делят на кислотопродуцирующую, которая располагается в проксимальном отделе на центральной части тела, выделяют также антральную слизистую, которая не образует соляную кислоту.

Состав – слизистые клетки, которые образуют слизь.

  • Обкладочные клетки, вырабатывающие соляную кислоту,
  • Главные клетки, которые продуцируют ферменты
  • Эндокринные клетки, которые вырабатывают гормон G-клетки – гастрин, D – клетки – соматостатин.

 

   Гликопротеин  - образует слизистый гель, он обволакивает стенку желудка  и предупреждает действие соляной кислоты на слизистую оболочку. Этот слой очень важен иначе нарушение слизистой оболочки. Он разрушается никотином, мало вырабатывается слизи при стрессовых ситуациях, которые могут приводить при гастритах и язвах.

  Железы желудка вырабатывают пепсиногены, которые действуют на белки, они в неактивной форме и нуждаются в соляной кислоте. Соляная кислота  вырабатывается обкладочными клетками, которые также вырабатывают фактор Касла – который нужен для усвоения внешнего фактора B12. В области антрального отдела отсутствуют обкладочные клетки, сок вырабатывается в слабощелочной реакции, но слизистая оболочка антрального отдела богата эндокринными клетками, которые вырабатывают гормоны. 4G-1D – соотношение.

 

Для изучения функции желудка изучаются методы которые накладывают фистулы – выделение маленького желудочка(По Павлову) а у человека желудочная секреция изучается методом зондирования и получение желудочного сока натощак без дачи пищи, а затем после пробного завтрака и самым распространенным завтракам  является – стакан чая без сахара и кусочек хлеба. Такие простые продукты являются мощными стимуляторами желудка.

 

Состав и свойства желудочного сока.

 

   В состоянии покоя в желудке у человека(без приема пищи) находится 50 мл  базальной секреции. Это смесь слюны, желудочного сока и иногда заброса из 12перстной кишки. За сутки образуется около 2 л желудочного сока. Это прозрачная опалесцирующая жидкость с плотностью 1,002-1,007. Имеет кислую реакцию, поскольку есть соляная кислота(0,3-0,5%). рН-0,8-1,5. Соляная кислота может находится в свободном состоянии и в связанном с белком. Желудочный сок также содержит неорганические вещества – хлориды, сульфаты, фосфаты и бикарбонаты натрия, калия, кальция, магния. Органические вещества представлены ферментами. Основные ферменты желудочного сока это пепсины(протеазы, действующие на белки) и липазы.

-Пепсин А – рН 1,5-2,0

-Гастриксин, пепсин С – рН- 3,2-,3,5

-Пепсин B – желатиназа

-Ренин, пепсин Д химозин.

-Липаза, действует на жиры

 

Все пепсины выделяются в неактивной форме в виде пепсиногена. Сейчас преложено разделить пепсины на группы 1 и 2.

Пепсины 1 выделяются только в кислотообразующей части слизистой желудка – где имеются обкладочные клетки.

Антральная часть и пилорическая часть – там выделяются пепсины группы 2. Пепсины осуществляют переваривание до промежуточных продуктов.

Амилаза, которая попадает со слюной может некоторое время расщеплять углеводы в желудке, пока не произойдет смена рН в кислую стону.

   Основной компонент желудочного сока  - вода – 99-99,5%.

   Важный компонент – соляная кислота. Её функции :

  1. Она способствует превращению неактивной формы пепсиногена в активную – пепсины.
  2. Соляная кислота создает оптимальное значение рН для протеолитических ферментов
  3. Вызывает денатурацию и набухание белков.
  4. Кислота обладает антибактериальным действием и бактерии которые попадают в желудок они погибают
  5. Участвует в образовании и гормона – гастрина и секретина.
  6.  Затвораживает молоко
  7. Участвует в регуляции перехода пищи из желудка, в 12-персную кишку.

 

5.            Экспериментально-хирургический метод в изучении органов пищеварения. Методики исследования желудочной секреции у человека и в эксперименте.

Методы хронического эксперимента. Принцип хронического эксперимента заключается в хирургической (оперативной) под­готовке животных, в ходе которой накладывают фистулу (отвер­стие, снабженное специальной трубкой, выходящей наружу) того или иного отдела пищеварительного тракта или выводных прото­ков пищеварительных желез. Опыты ставят на выздоровевщих после операции животных.

В. А. Басов (1842) успешно произвел операцию наложения фистулы желудка у собак. При дальнейшем усовершенствовании этой операции в желудочном свище фиксировали трубку, которую вне опыта закрывали пробкой. Открыв ее, можно было получать содержимое желудка.

В лаборатории И. П. Павлова у таких собак была выполнена операция эзофаготомии (перерезка пищевода). После заживления раны производили «мнимое кормление» собаки: она ела, но пища выпадала из отверстия пищевода, а из открытой желудочной фис­тулы изливался сок (рис. 9.2). Сок в чистом виде получали у собак с изолированными выкроенными в хирургических операциях из различных частей желудка желудочками (рис. 9.3). Желудочек, выкроенный по методу Павлова, в отличие от желудочка Гейденгайна имеет сохраненную вагусную иннервацию и более полно отражает секрецию в большом желудке, где идет пищеварительный процесс. Применяют методы хирургической изоляции петли тон­кой кишки с выведением в кожную рану одного дистального (опе­рация Тири) или двух (операция Тири—Веяла) ее концов (рис. 9.4), из которых собирают кишечный сок или куда вводят растворы для изучения их всасывания.

Широкое распространение получили операции выведения нару­жу и вживления в кожную рану выводных протоков слюнных и поджелудочной желез, желчного выводного протока. Разработаны методы, предотвращающие потерю пищеварительных секретов вне экспериментов.

Фистульная методика позволяет в любое время наблюдать за функцией органа, который имеет нормальные кровоснабжение и иннервацию. Из фистулы собирают чистые пищеварительные соки, изучают их состав и свойства натощак, после кромления животных или иной стимуляции секреции. На фистульных животных изучают моторную и секреторную функции органов пищеварения, процессы гидролиза и всасывания питательных веществ в различных отделах пищеварительного тракта на практически здоровых животных в почти естественных условиях хронических экспериментов. В ис­следованиях И. П. Павлова, принесших ему широкую славу и Но­белевскую премию (1904), в хронических опытах были получены новые данные, и, как сказано в Нобелевском дипломе, И. П. Пав­лов «пересоздал физиологию пищеварения».

С исследовательской целью фистулы человеку не накладывают. Иногда фистулы образуются при ранении, иной патологии, их делают с целью сохранения жизни человека, например для введе­ния пищи в желудок при непроходимости пищевода. Основные ме­тоды исследования пищеварительных функций у человека ориенти­рованы на их безвредность и безболезненность. Эти методы ис­пользуют в функциональной диагностике здорового и больного человека.

Исследование процессов секреции.

Для изучения слюноотделе­ния слюну получают при сплевывании после полоскания рта, но получаемая при этом ротовая жидкость является смесью слюны разных желез, остатков пищи и других компонентов полости рта; кроме того, нельзя точно определить ее объем. Чистую слюну крупных слюнных желез получают путем катетеризации их прото­ков и с помощью капсул Лешли—Красногорского, фиксируемых к слизистой оболочке рта над протоками околоушных, поднижнечелюстной и подъязычной слюнных желез (у них проток открыва­ется единым сосочком). Человек с капсулой во рту (рис. 9.5) мо­жет жевать пищу, что вызывает саливацию. Применяют и другие ее стимуляторы. Учитывают объем выделившейся за определенное время слюны, определяют ее состав и свойства (вязкость, рН, со­держание электролитов, ферментов, муцина).

Для изучения секреторной деятельности желез желудка, под­желудочной железы, тонкой кишки, желчевыделения у человека используют зондовые и беззондовые методы. При зондовых иссле­дованиях испытуемый проглатывает (или ее вводят через нос) эластичную трубку, которая проводится в желудок, двенадцати­перстную или тощую кишку. Существуют двухканальные зонды для одновременного получения содержимого желудка и двенадца­типерстной кишки, которое можно отсасывать как натощак, как и после стимуляции пищеварительных желез различными метода­ми (прием пробного завтрака, различных фармакологических сти­муляторов и т. д.).

Применение эндоскопических управляемых зондов позволило вводить тонкий катетер в проток поджелудочной железы и полу­чать ее секрет без примеси к нему других секретов, что неизбежно при аспирации содержимого двенадцатиперстной кишки.

Зондовые методы позволяют определять объем секрета и со­держание различных его компонентов: электролитов, ферментов, а также рН и др. Стимуляторы секреции вводят в пищеваритель­ный тракт или парентерально. Знание механизмов их действия позволяет определить место, характер и причины нарушения сек­реции.

Существуют методы зондирования, с помощью которых воз­можно определение ряда параметров непосредственно в полости пищеварительного тракта, наблюдения за их динамикой в содер­жимом желудка или кишечника. Для этого зонды снабжают соот­ветствующими датчиками (например, датчиками рН, давления, электродами для отведения регистрируемых потенциалов и др.). Методы эндоскопического исследования желудка и кишечника, кроме визуального контроля за состоянием слизистой оболочки, позволяют брать ее кусочки для последующего морфологического и биохимического исследования.

Наконец, существуют зонды, с помощью которых полость же­лудка или кишки перфузируют растворами разного состава. Так, перфузируя отрезок кишки раствором какого-либо вещества, на­пример крахмала, можно по разности его концентрации во вводи­мом и аспирируемом растворах определить переваривание крахма­ла и оценить соответствующую ферментативную активность ис­следуемого отрезка кишки.

Применение зондовых методов в ряде случаев противопоказа­но, поэтому разрабатываются и беззондовые, основанные на раз­ных принципах методы исследования секреции пищеварительных желез. В одних методах учитывают содержание в крови и выделе­ние с мочой веществ, освободившихся из принятых препаратов под действием на них пищеварительных секретов. Например, если кислотность желудочного сока нормальная, то индикатор быстро появляется в крови и моче, если кислотность низкая или нулевая, то в исследуемых жидкостях индикатор отсутствует или появляет­ся с большим опозданием.

В другой группе беззондовых методов функциональное состоя­ние пищеварительных желез оценивают по активности их фермен­тов в крови и моче: она при прочих равных условиях тем выше, чем большее число гландулоцитов тех или иных желез синтезиру­ет данные ферменты, которые покидают железы не только в соста­ве секретов, но частично транспортируются в лимфу и кровь, от­куда выводятся в составе мочи (и других экскретов).

Косвенно оценить полноценность секреции пищеварительных желез можно по наличию в кале негидролизованных компонентов принятой пищи, а также определяя активность в кале ферментов поджелудочной железы и тонкой кишки.

С развитием радиотелеметрии появилась возможность скон­струировать приборы для эндорадиозондирования пищеваритель­ного тракта. Проглоченная радиокапсула, передвигаясь по нему, может в виде радиосигналов передавать информацию о ряде пара­метров его содержимого, в том числе о pН.

 

6. Молекулярно-клеточные механизмы секреции соляной кислоты в желудке. Н-К-АТФаза и ее роль. 

   Соляная кислота образуется в обкладочных клетках. Это достаточно крупные клетки пирамидальной формы. Внутри этих клеток – большое количество митохондрий, они содержат систему внутриклеточных канальцев и с ними тесно связаны пузырьковая система в форме везикул. Эти везикулы связываются с канальцевой частью при их активации. В канальце образуется большое число микроворсинок, которые увеличивают площадь поверхности.

   Образование соляной кислоты происходит внутриканальцевой системе обкладочных клеток.

На первом этапе происходит перенос аниона хлора в просвет канальца. Ионы хлора поступают через специальный хлорный канал. В канальце создается отрицательный заряд который притягивает туда внутриклеточный калий.

На следующем этапе происходит обмен калия на протон водорода, за счет активного транспорта водород калий АТФаза. Калий обменивается на протон водорода. С помощью этого насоса калий загоняется внутриклетоной стенки. Внутри клетки образуется угольная кислота. Она образуется в результате взаимодействия углекислого газа и воды за счет карбоангидразы. Угольная кислота диссоциирует на протон водорода и анион HCO3. Протон водорода обменивается на калий, а анион HCO3 обменивается на ион хлора. В обкладочную клетку поступает хлор, который потом пойдет в просвет канальца.

 В обкладочных клетках есть еще один механизм – натрий – калий атфаза, который выводит натрий из клетки и возвращает натрий.

Процесс образования соляной кислоты – энергозатратный процесс. АТФ образуется в митохондриях. Они могут занимать до 40 % объема обкладочных клеток. Концентрация соляной кислоты в канальцах очень высока. PН внутри канальца до 0,8 – концентрация соляной кислоты 150млмоль на л. Концентрация в 4000000 выше чем в плазме. Процесс образования соляной кислоты в обкладочных клетка регулируется влияниями на обкладочную клетку ацетилхолина, который выделяется в окончаниях блуждающего нерва.

 

   Обкладочные клетки имеют холинорецепторы и стимулируется образование HСl.

  Гастриновые рецепторы и гормон гастрин тоже активирует образование HCl, причем это происходит через активацию мембранных белков и образования фосфолипазы C и образуется инозитол-3-фосфат и это стимулирует увеличение кальция и запускается гормональный механизм.

Третий тип рецепторов - гистаминовые рецепторы  H2. Гистамин вырабатывается в желудки в энтерохромтаинных тучных клетках. Гистамин действует на H2 рецепторы. Здесь влияние реализуется через аденилатциклазный механизм. Активируется аденилатциклаза и образуется циклический АМФ 

Тормозит – соматостатин, который вырабатывается в Д клетках.

   Соляная кислота – основной фактор поражения слизистой при нарушении защиты оболочки. Лечение гастрита – подавление действия соляной кислоты. Очень широко используются антогонисты гистамина – циметидин, ранитидин, блокируют H2 рецепторы и снижается образование соляной кислоты.

Подавление водород-калий атфазы. Было получено вещество, которое является фармакологическим препаратом омепразол. Он подавляет водород-калий атфазу. Это очень мягкое действие, снижающие выработку соляной кислоты.

 

7. Секреторные нервы желудка. Влияние симпатических и парасимпатических нервов на секрецию.

   Секреторными нервами будут являться блуждающие. Именно через них происходит воздействие на обкладочные клетки, которые вырабатывают соляную кислоту.

   Блуждающий нерв стимулирует гастриновые клетки в антральном отделе и образуется Гастрин, а Д клетки, где вырабатываются соматостатин тормозятся. Было обнаружено, что на гастриновые клетки блуждающий нерв действует через медиатор – бомбезин. Это возбуждает гастриновые клетки. На Д клетки, которые продуцирует соматостатин он подавляет. В первую фазу желудочной секреции – 30% желудочного сока. Он обладает высокой кислотностью, переваривающей силой. Цель первой фазы – готовить желудок к приему пищи. Когда пища попадает в желудок начинается желудочная фаза секреции. При этом пищевое содержимое механически растягивает стенки желудка и возбуждаются чувствительные окончания блуждающих нервов, а также чувствительные окончания, которые образованы клетками подслизистого сплетения. В желудке возникают местные рефлекторные дуги. Клетка Доггеля(чувствительная) образует рецептор в слизистой и при раздражении она возбуждается и передает возбуждение на клетки 1ого типа – секреторные или моторные. Возникает локальный местный рефлекс и железа начинает работать. Клетки 1ого типа являются и постганлионарами для блуждающего нерва. Блуждающие нервы держат под контролем гуморальный механизм. Одновременно с нервным механизмом начинает работать гуморальный механизм.

 

8. Фазы секреции желудочного сока. Сложно-рефлекторная фаза секреции, доказательство роли рефлекторного механизма секреции.

Фазы секреции пищеварительных желез. Образцом системного анализа механизмов регуляции пищеварительных функций явилось учение И. П. Павлова о фазах секреции главных пищеварительных желез, которое в настоящее время существенно дополнено и про­должает развиваться (рис. 9.8).

Секреция пищеварительных желез начинается с так называе­мой мозговой, или первой, фазы. Она осуществляется сложно-рефлекторно через ЦНС с участием условных и безусловных рефлек­сов. Секрецию стимулируют условно-рефлекторно вид, запах еще не принятой пищи и другие раздражители, связанные с ее приемом (обстановка, время, сервировка стола и др.); безусловно-рефлекторно — путем раздражения пищей рецепторов полости рта и пи­щевода. Вторая фаза секреции желез, возникающая при раздра­жении рецепторного аппарата желудка и высвобождении его гу­моральных агентов, называется «желудочной». «Кишечной», или третьей, фазой называется секреция, опосредуемая интестинальными гормонами, раздражением рецепторов кишечника и всосав­шимися из него питательными веществами.

Деление секреции на фазы (см. рис. 9.8) основано на несколь­ких принципах: по месту афферентации, механизму и характеру воздействия на пищеварительные железы. Учение о фазах секре­ции было сначала предложено для объяснения секреции желудочных

 желез, но оно справедливо и для поджелудочной железы. Каждая из фаз имеет не только стимулирующий, но и тормозной компонент, что обеспечивает корригирующую роль динамического регуляторного контроля за секрецией. Учение о фазах секреции в принципе может быть перенесено и на системный анализ моторной деятельности пищеварительного тракта. Моторика тонкой кишки усиливается в раздражаемом и более дистальном ее сегменте, но тормозится в проксимальном ее участке. Это характерно и для моторики всего пищеварительно­го тракта и его секреции. Так, недостаточный гидролиз пищи в желудке задерживает эвакуацию из него пищевого содержимого. Если в силу тех или иных причин желудочная секреция в первую («мозговую») фазу заторможена (а она легко тормозится по мно­гим причинам), то обычно удлиняется секреция в «желудочную» и «кишечную» фазы. В целом же недостаточность пищеваритель­ного процесса в данном отделе пищеварительного тракта усиливает деятельность его последующих отделов, компенсируя запрограм­мированный уровень переработки пищи путем усиления секреции и увеличения времени пребывания пищевого содержимого в желудке и замедления транзита химуса по тонкой кишке. Эта схема регуля­ции имеет много вариантов в норме и часто нарушается при па­тологии.

   Сложно-рефлеторная фаза. Обусловлена возбуждением желудочных желез комплексом безусловных и условных рефлексов, связанных с приемом пищи. Условные рефлексы возникают при раздражении обонятельных, зрительных, слуховых рецепторов, на вид, запах, на обстановку. Это условные сигналы. На них накладывается воздействие раздражителей на полость рта, рецепторы глотки, пищевода. Это безусловные раздражения. Именно эту фазу Павлов и изучал в опыте мнимого кормления. Латенетный период от начала кормления – 5-10 минут, то есть включаются желудочные железы. После прекращения кормления – секреция длится 1,5-2 часа, если пища не попадает в желудок.

 

9. Нейро-гуморальная фаза секреции желудочного сока. Факторы, стимулирующие выработку гормонов.

   Гуморальный механизм связан с выделение Гастрина G клетками. Они вырабатывают  две формы гастрина – из 17 аминокислотных остатков – «малый» гастрин и есть вторая форма из 34 аминокислотных остатков – большой гастрин. Малый гастрин обладает более сильным действием, чем большой но в крови содержится больше большого гастрина. Гастрин, который вырабатывается подгастриновыми клетками и действует на обкладочные клетки, стимулируя образование HСl. Он же действует и на обкладочные клетки.

Функции гастрина – стимулирует секрецию соляной кислоты, усиливает выработку фермента, стимулирует моторику желудка, необходим для роста слизистой оболочки желудка. Еще он стимулирует выделение сока поджелудочной железы. Выработка гастрина стимулируется не только нервными факторами, но и пищевые продукты, которые образуются в ходе расщепления пищи тоже являются стимуляторами. К ним относят продукты расщепления белка, алкоголь, кофе – кофеиновый и безкофеиновый. Выработка соляной кислоты зависит от ph и при снижении ph ниже 2х, происходит подавление выработки соляной кислоты. Т.е. это связано с тем, что высокая концентрация соляной кислоты тормозит выработку гастрина. В то же время высокая конецентрация соляной кислоты активирует выработку соматостатина, а он угнетает выработку гастрина. Аминокислоты и пептиды могут непосредственно действовать на обкладочные клетки и повышать секрецию соляной кислоты. Белки, обладая буферными свойствами, связывают протон водорода и поддерживает оптимальный уровень образования кислоты

 

10. Пищеварение в двенадцатиперстной кишке. Значение поджелудочной железы в пищеварении. Состав и свойства поджелудочного сока, возрастные изменения. Молекулярно-клеточные механизмы секреции бикарбонатов. Роль Н-Na-АТФазы и карбангидразы.

имус, который поступает в 12 перстную кишку подвергаются действию поджелудочного сока, желчи и кишечного сока.

Поджелудочная железа – крупнейшая железа. Имеет  двойную функцию – внтурисекреторную – инсулин и глюкагон и внешнесекреторная функция, которая обеспечивает выработку поджелудочного сока.

   Поджелудочный сок образуется в железе, в ацинусе. Которые выстланы переходными клетками в 1 ряд. В этих клетках идет активный процесс образования ферментов. В них хорошо выражена эндоплазматчиеская сеть, Аппарат Гольджи и от ацинусов начинаются протоки поджелудочной железы и образуют 2 протока, открывающихся в 12 перстную кишку. Самый крупный проток – проток Вирсунга. Он открывается вмстес общим желчным протоком в области Фатерова соска. Здесь находится сфинктер Одди. Второй добавочный проток – Санторинни открывается проксимальнее Версунгова протока. Изучение – наложение фистул на 1 из протоков. У человека изучается методом зондирования.

   По своему составу поджелудочный сок – прозрачная бесцветная жидкость щелочной реакции. Количество 1-1,5 л за сутки, pН 7,8-8,4. Ионный состав калия и натрия такой же как в плазме, но больше ионов бикарбоната, а Сl меньше. В ацинусе содержание такое же, но по мере движения сока по протокам приводит к тому, что клетки протока обеспечивают захватывание анионов хлора и количество анионов бикарбоната увеличивается. Поджелудочный сок богат по ферментному составу.

   Протеолитические ферменты, действующие на белки – эндопептидазы и экзопептидазы. Разница в том, что эндопептидазы действуют на внутренние связи, а экзопептидазы отщепляют концевые аминокислоты.

Эндопепидазы – трипсин, химотрипсин, эластазы

Эктопептидазы – карбоксипептидазы и аминопептидазы

Протеолитические ферменты вырабатываются в неактивной форме – проферменты. Активация происходит под действием энтерокиназы. Она активирует трипсин. Трипсин выделяется в форм трипсиногена. А активная форма трипсина активирует остальные. Энтерокиназа – фермент кишечного сока. При закупорках протока железы и при обильном употреблении алкоголем может наступит активация ферментов поджелудочной железы внутри нее. Начинается процесс самопереваривания поджелудочной железы – острый панкреатит.

   На углеводы действуют аминолитические ферменты –альфаамилаза, расщепляет полисаахриды, крахмал, гликоген, не может расщеплять целюлоу, с образованием мальтоыз, мальтотиозы, и декстрина.

   Жировые литолитические ферменты – липаза, фосфолипаза А2, холестерин. Липаза действует на нейтральные жиры и расщепляет их до жирных кислот и глицерина, холистеринэстераза действует на холестерин, а фосфолипаза на фосфолипиды.

   Ферменты на нуклеиновые кислоты – рибонуклеаза, дезоксирибонуклеаза.

 

 

 

11. Нервная и гуморальная регуляция секреции поджелудочного сока. Значение секретина и холецистокинина-панкреозимина.

Она связана с нервными и гуморальными механизмами регуляции и происходит включение поджелудочной железы в 3 фазы

  • Сложно рефлекторную
  • Желудочную
  • Кишечную

Секреторный нерв – блуждающий нерв, который действует на выработку ферментов в клетке ацинусов и на клетки протоков. Влияние симпатических нервов на поджелудочную нет, но симпатические нервы вызывают снижение кровотока, и происходит уменьшение секреции.

Большое значение имеет гуморальная регуляция поджелудочной железы – образование 2х гормонов слизистой оболочки. В слизистой оболочке есть С клетки, которые вырабатывают гормон секретин и секретин всасываясь в кровь он действует на клетки протоков поджелудочной железы. Стимулирует эти клетки действие соляной кислоты

2ой гормон вырабатывается I клетками – холецистокинин. В отличи от секретина действует на клетки ацинуса, количество сока будет меньше, но сок богат ферментами и возбуждение клеток типа I идет под действием аминокислот и в меньшей степени соляной кислоты. Другие гормоны действуют на поджелудочную железу – ВИП – оказывает действие, похожее с секретином. Гастрин сходен с холецистокинином. В сложнорефлекторную фазу секрецию выделяется 20 % ее объема, 5-10% приходится на желудочную ,а остальное на кишечную фазу и т.к. поджелудочная железа находится на следующем этапе воздействия на пищу, выработка желудочного сока очень тесно взаимодействует с желудком. Если развивается гастрит, то вслед за ним идет панкреатит.

 

12. Влияние пищевых веществ на секрецию поджелудочного сока.

ясо – белковый продукт, хлеб – растительный и молоко – смешанный.

   На мясо – выделяется максимальное количество сока с Максимум секреции на второй час. Сок обладает максимальной кислотностью, ферментативность не высокая. Быстрое нарастание секреции обусловлено сильным рефлекторным раздражением – вид, запах. Затем, после максимума секреция начинает снижаться, спад секреции идет медленно. Высокое содержание соляной кислоты обеспечивает денатурацию белка. Окончательное расщепление идет в кишечнике.

   Секреция на хлеб. Максимум достигается к 1ому часу. Быстрое нарастание связано с сильным рефлекторным раздражителем. Достигнув максимума секреция довольно быстро падает, т.к. мало гуморальных стимуляторов, но секреция длиться долго(до 10 часов). Ферментативная способность – высокая – кислотность нет.

     Молоко – медленный подъем секреции. Слабое раздражение рецепторов. Содержат жиры, секрецию тормозят. Вторая фаза после достижения максимума характеризуется равномерным спадом. Здесь образуются продукты расщепления жиров, которые стимулируют секрецию. Ферментативная активность невысокая. Необходимо употреблять овощи, соки и минеральную воду.

 

13. Функции печени (барьерная и др.) Роль в обмене веществ.

Печень является самым крупным органом. Вес у взрослого человека составляет 2,5% от общего веса тела. За 1 минуту печень получает 1350 мл крови и это составляет 27% минутного объема. Печень получает и артериальную и венозную кровь.

  • Артериальный кровоток – 400 мл в минуту. Артериальная кровь поступает через печеночную артерию
  • Венозный кровоток – 1500 мл в минуту. Венозная кровь поступает по воротной вене от желудка, тонкой кишки, поджелудочной железы, селезенки и частично толстой кишки. Именно по воротной вене поступают питательные вещества и витамины из пищеварительного тракта. Печень захватывает эти вещества и затем распределяет их по другим органам.

Важная роль печени принадлежит углеродному обмену. Она поддерживает уровень сахара в крови, являясь депо гликогена. Регулирует содержание липидов в крови и особенно липоппротеинов с низкой плотностью, которые она секретирует. Важная роль в белковом отделе. Все белки плазмы образуются в печени.

Печень выполняет обезвреживающую функцию по отношению к токсическим вещества и лекарственным препаратам.

Выполняет секреторную функцию – образование печенью желчью и выведение желчных пигментов, холестерина, лекарственных веществ.

Осуществляет эндокринную функцию.

 Функциональной единицей является печеночная долька, которая построена из печеночных балок, образованных гепатоцитами. В центре печеночной дольки – центральная вена, в которую оттекает кровь из синусоидов. Собирает кровь от капилляров воротной вены и капилляров печеночной артерии. Центральные вены сливаясь друг с другом постепенно формируют венозную систему оттока крови из печени. И кровь из печени оттекает по печеночной вене, которая впадает в нижнюю полую вену. В печеночных балках при контакте соседних гепатоцитов образуются желчные канальцы. Они отделяются от межклеточной жидкости плотными контактами, Это препятствует смешиванию желчи и внеклеточной жидкости. Образующаяся гепатоцитами желчь поступает в канальцы, которые сливаясь постепенно формируют систему внутрипеченочных желчных протоков. В конечном итоге поступает в желчный пузырь или по общему протоку в 12перстную кишку. Общий желчный проток соединяется с Персунговым протоком поджелудочной железы и вместе м ним открывается на вершине Фатеровасоска. У места выхода общего желчного протока имеется сфинктер Одди, котоырй и регулируют поступление желчи в 12 перстную кишку.

Синусоиды образованы эндотелиальными клетками, которые лежат на базальной мембране, вокруг – перисинусоидальное пространство – пространство Диссе. Это пространство отделяет синусоиды и гепатоциты. Мембраны гепатоцитов образуют многочисленные складки, ворсинки и они выступают в пересинусоидальнео пространство. Эти ворсинки увеличивают площадь соприкосновения с пересуносиадльной жидкостью. Слабая выраженность базальной мембраны, эндотелиальные клетки синусоида содержат крупные поры. Структура напоминает решето. Поры пропускают вещества от 100 до 500 нм в диаметре.

Количество белков в пересинусоидальном пространстве будет больше чем плазме. Имеются макроциты макрофагальной системы. Эти клетки путем эндоцитоза обеспечивают удаление бактерий, поврежденных эритроцитов, иммунных комплексов. Некоторые клетки синусоидов в цитоплазме может содержать капельки жира – клетки Ито. В них содержится витамин А. Эти клетки связаны с колагеновыми волокнами, по своим свойствам близки к фибробластам. Они развиваются при циррозе печени.

Продукция желчи гепатоцитами – печень вырабатывает за сутки 600-120 мл желчи. Желчь выполняет 2 важные функции –

ü  Она необходима для переваривания и всасывании жиров. Благодаря наличию желчных кислот – желчь производит эмульгирование жира и превращение его в мелкие капли. Процесс будет способствовать лучшему действию липаз, для лучшего расщепления до жиров и желчных кислот. Желчь необходима для транспорта и всасывания продуктов расщепления

ü  Экскреторная функция. С ней выводится билирубин, холестренин. Секреция желчи происходит в 2 стадии. Первичная желчь образуется в гепатоцитах, она содержит желчные соли, желчные пигменты, холестерин, фосфолипиды и белки, электролиты, которые по своему содержанию идентичны электролитам плазмы, кроме аниона бикарбоната, который в желчи содержится больше. Это и придает щелочную реакцию. Эта желчь и поступает из гепатоцитов в желчные канальцы. На следующем этапе происходит движение желчи по междольковым, долевым протоком, затем к печеночному и общему желчному протоку. ПО мере продвижения желчи, эпителиальные клетки протоков, секретируют анионы натрия и бикарбоната. Это уже по сути вторичная секреция. Объем желчи в протоках может увеличиваться на 100%. Секретин увеличивает секрецию бикарбоната для нейтрализации соляной кислоты из желудка.

Вне пищеварения желчь накапливается в желчном пузыре, куда она попадает через пузырный проток.

 

14. Роль печени в пищеварении. Образование желчи, ее значение в пищеварении. Регуляция выведения желчи в кишечник.

Клетки печени секретируют 0,6 кислот и их солей. Желчные кислоты образуются в печени из холестерина, который поступает в организм либо с пищей, либо может синтезироваться гепатоцитами в ходе солевого обмена. При добавление к стероидному ядру каарбоксильныеи гидроксильных групп, образуются первичные желчные кислоты-

  • Холевая
  • Хенодезоксихолевая

 

Они соединяются с глицином, но в меньшей степени с таурином. Это приводит к образованию гликохолевых или таурохолевых кислот. При взаимодействии с катионами образуются соли натрия и калия. Первичные желчные кислоты поступают в кишечник и в кишечнике, кишечные бактерии превращают их во вторичные желчные кислоты

  • Дезоксихолевая
  • Литохолевая

 

Желчные соли обладают большей ионообразующей способность, чем сами кислоты. Желчные соли – полярные соединения, что снижает их проникновение через клеточную мембрану. Следовательно будет снижаться всасывание. Соединяясь с фосфолипидами и моноглицеридами желчные кислоты способствуют эмульгрованию жиров, повышают активность липазы и превращают продукты гидролиза жиров в растворимые соединения. Поскольку желчные соли содержат гидрофильные и гидрофобные группы они принимают участие в образовании с холестеринами, фосфолипидами и моноглицеридами образуют цилиндрические диски, которые будут водорастворимыми мицеллами. Именно в таких комплексах эти продукты и проходят через щеточную кайму энтероцитов. До 95% желчные соли и кислоты реабсорбируются в кишечнике. 5% будет выводится с каловыми массам.

Всосавшиеся желчные кислоты и их соли соединяются в крови с липопротеинами высокой плотности. По воротной вене они вновь поступают в печень, где на 80% снова захватываются из крови гепатоцитами. Благодаря такому механизму в организме создается запас желчных кислот и их солей, который составляет от 2 до 4г. Там совершается кишечно-печеночный кругооборот желчных кислот, который способствует всасыванию липидов в кишечнике. У людей, которые едят не много, такой оборот совершается 3-5 раз за сутки, а у людей обильно потребляющих пищу такой круговорот может возрастать до 14-16 раз за сутки.

Воспалительные состояния слизистой тонкой кишки уменьшают процессы всасывания желчных солей, это ухудшает всасывания жиров.

Холестерин – 1,6-8,№ ммол/л

Фосфолипиды – 0,3-11 ммол/л

 

Холестерин рассматривают как побочный продукт. Холестерин практически не растворим в чистой воде, но соединяясь с желчными солями в мицеллах он превращается в водорасстворимое соединение. При некоторых патологических состояниях происходит осаждение холестерина, отложение в нем кальция и это вызывает образование желчных камней. Желчно-каменная болезнь – довольно распространенная болезнь.

  • Образованию желчных солей способствует избыточное всасывание воды в желчном пузыре.
  • Избыточное всасывание желчных кислот из желчи.
  • Увеличение холестерина в желчи.
  • Воспалительные процессы в слизистой желчного пузыря

 

Емкость желчного пузыря 30-60 мл. За 12 часов в желчном пузыре может накапливать до 450  мл желчи и это происходит благодаря процессу концентрирования, при этом всасывается вода, ионы натрия и хлора, другие электролиты и обычно желчь концентрируется в пузыре 5 раз, но максимальное концентрирование – 12-20 раз. Примерно половина растворимых соединений в пузырной желчи приходится на желчные соли, также здесь достигается высокая концентрация билирубина, холестерина и лейцитина, но электролитный состав идентичен плазме. Опорожнение желчного пузыря происходит во время переваривания пищи и особенно жира.

Процесс опорожнения желчного пузыря связан с гормоном холецистокинином. Он расслабляет сфинктер Одди и способствует расслаблению мускулатуры самого пузыря. Перестальтические сокращения пузыря дальше идут на пузырный проток, общий желчный проток, что приводит к выведению желчи из пузыря в 12перстную кишку. Экскреторная функция печени связана с выведением желчных пигментов.

 

 15. Пищеварение в тонкой кишке. Кишечный сок и его состав. Виды пищеварения в кишечнике (полостное, пристеночное). Регуляция секреции кишечного сока.

Исследование пищеварительных процессов в тонком кишечнике позволило установить важную роль, которая принадлежит соприкосновению питательных веществ с поверхностью мембран клеток слизистой оболочки. В опытах in vitro оказалось, что в присутствии полоски живой кишки скорость ферментативного гидролиза некоторых питательных веществ, например, крахмала, возрастает, значительно превышая суммарную активность содержащего ферменты раствора и полоски кишки, взятых в отдельности. В соответствии с этим найдено, что скорость гидролиза крахмала и белка происходит намного быстрее внутри кишки, чем в пробирке под влиянием ферментов, содержащихся в выделенном в кишку соке.

       Получены данные, что пептидазная активность сосредоточена в основном на свободной поверхности клеток кишечного эпителия. Обнаружено, что липаза поджелудочного сока адсорбируется на поверхности эпителия тонких кишок. На основании этих фактов Уголев пришел к заключению, что большая пористая поверхность тонкой кишки способствует усилению энзиматических процессов, адсорбируя ферменты и являясь своеобразным пористым катализатором. Окончательное расщепление питательных веществ происходит на той же поверхности тонкой кишки, которая обладает функцией всасывания. Происходящее на поверхности кишки расщепление питательных веществ названо пристеночным, контактным, или мембранным пищеварением, в отличие от полостного пищеварения, осуществляющегося в полости пищеварительного тракта без непосредственного контакта со слизистой оболочкой, и внутриклеточного пищеварения, совершающегося в клетке (например, при фагоцитозе). Таким образом различают три типа пищеварения: полостное, пристеночное и внутриклеточное .

 

16. Моторная деятельность пищеварительного тракта. Методики ее изучения.

Моторная, или двигательная, функция осуществляется на всех этапах процесса пищеварения. В пищеварительном тракте проис­ходят произвольные и непроизвольные, макро- и микромоторные явления. Прием, механическая переработка пищи в ходе жевания, глотание, задержка в желудке и эвакуация его содержимого в ки­шечник, сокращения и расслабления желчного пузыря, переме­шивание и передвижение кишечного содержимого (химуса), пере­распределение давления в отделах тонкой кишки, перемешивание пристеночного слоя химуса, переход химуса из тонкой кишки в толстую, сокращение и расслабление сфинктеров, движения тол­стой кишки, необходимые для формирования кала и дефекации,— основные моторные процессы, обеспечивающие процесс пищева­рения в различных отделах пищеварительного тракта.

Изменение тонуса и перистальтики выводных протоков пище варительных желез, состояние их сфинктеров обеспечивают выве­дение пищеварительных секретов. К моторике также относятся движения ворсинок и микроворсинок.

Гладкие мышцы пищеварительного тракта образованы глад­кими мышечными клетками (миоциты), обладающими рядом спе­цифических физиологических свойств. Мио­циты плотно упакованы в пучки и соединены нексусами. Пучок считается функциональной единицей гладкой мышцы. Пучок иннервируется нервными терминалями, он также получает мелкую артериолу. Нейромедиаторы и физиологически активные вещества, вышедшие из крови в интерстициальную жидкость пучка, оказы­вают на его миоциты возбуждающие и тормозные влияния.

Гладкие мышцы пищеварительного тракта относятся к группе унитарных и обладают способностью спонтанного ритмического возбуждения и свойствами синцития. Растяжение гладких мышц вызывает деполяризацию их мембран и мышечное сокращение. Вегетативные нервы, гормоны и парагормоны изменяют частоту и силу этих сокращений в широких пределах. На протяжении пище­варительного тракта имеется несколько водителей ритма его со­кращений. Эти водители ритма особенно чувствительны к физиоло­гически активным веществам и получают обильную иннервацию.

Сложность движений пищеварительного тракта обеспечивается наличием в нем слоев и пучков гладких мышц, идущих в разных направлениях, при расслаблении или сокращении которых умень­шается или увеличивается тонус кишки и изменяется просвет пи­щеварительного канала. Волна сокращений и расслабления круго­вых мышц продвигается вдоль пищеварительного канала, создавая его перистальтические сокращения. Согласование сокращений раз­личных мышечных пучков осуществляется посредством перифе­рической интрамуральной нервной системы.

В пищеварительном тракте около 35 сфинктеров (жомов) — специальных замыкательных аппаратов, состоящих из скопления преимущественно циркулярно расположенных мышечных пучков, а также мышечных пучков спирального и продольного направлений. Сокращение циркулярно расположенных мышечных пучков обе­спечивает смыкание и уменьшение просвета сфинктера, сокраще­ние спирально и продольно расположенных пучков увеличивает просвет сфинктера. Сфинктеры выполняют роль клапанов, обеспе­чивающих движение пищевого содержимого в каудальном направ­лении, одноправленное движение пищеварительных секретов, раз­общение отделов пищеварительного тракта, где пищеварение про­исходит на характерных для них этапах.

В координации моторики пищеварительного тракта велика роль миогенных механизмов, периферической (интра- и экстрамуральной) и центральной нервной системы. Последняя имеет важное значение в пусковых влияниях на органы пищеварения, в измене­нии их реактивности, интеграции моторной и секреторной функ­ций пищеварительного тракта, его адаптации к виду принятой пищи. Парасимпатические влияния преимущественно повышают мо­торную активность пищеварительного тракта, но в составе блуж­дающих нервов имеются возбуждающие и тормозящие моторику нервные волокна. Симпатические влияния заключаются в основном в снижении моторной активности. Нервные, гормональные и пара-гормональные влияния создают сочетанные органные и межорган­ные внутрисистемные эффекты. Так, желчевыделение осуществля­ется сокращениями желчного пузыря при открытом сфинктере печеночно-поджелудочной ампулы (сфинктер Одди); желудочная эвакуация — при сокращении антральной части желудка, но рас­слабленном сфинктере привратника  (пилорический сфинктер).

 

17. Процесс жевания, формирование пищевого комка, глотание пищи. Глотательный рефлекс и его фазы. Центры жевания и глотания. Передвижение пищи по пищеводу.


Жевание завершается глотанием — переходом пищевого комка из полости рта в желудок. Глотание возникает в результате раздражения чувствительных нервных окончаний тройничного, гортанных и языкоглоточного нервов. По афферентным волокнам этих нервов импульсы поступают в продолговатый мозг, где распо­ложен центр глотания. От него импульсы по эфферентным двига­тельным волокнам тройничного, языкоглоточного, подъязычного и блуждающего нервов достигают мышц, обеспечивающих глотание. Доказательством рефлекторного характера глотания служит то, что если обработать корень языка и глотку раствором кокаина и «выключить» таким образом их рецепторы, то глотание не осуще­ствится. Деятельность бульбарного центра глотания координирует­ся двигательными центрами среднего мозга, коры больших полу­шарий. Бульварный центр находится в тесной связи с центром дыхания, тормозя его при глотании, что предотвращает попадание пищи в воздухоносные пути.

Рефлекс глотания состоит из трех последовательных фаз: I—ротовой (произвольной); II—глоточной (быстрой, ко­роткой непроизвольной); III — пищеводной (медленной, длитель­ной непроизвольной).

Во время фазы I из пищевой пережеванной массы во рту фор­мируется пищевой комок объемом 5—15 см; движениями языка он перемещается на его спинку. Произвольными сокращениями перед­ней, а затем средней части языка пищевой комок прижимается к твердому небу и переводится на корень языка за передние дужки.

Во время фазы II раздражение рецепторов корня языка рефлекторно вызывает сокращение мышц, приподнимающих мягкое небо, что препятствует попаданию пищи в полость носа. Движе­ниями языка пищевой комок проталкивается в глотку. Одновре­менно происходит сокращение мышц, смещающих подъязычную кость и вызывающих поднятие гортани, вследствие чего закрывает­ся вход в дыхательные пути, что препятствует поступлению в них пищи. Переводу пищевого комка в глотку способствуют повышение давления в полости рта и снижение давления в глотке. Препятст­вуют обратному движению пищи в ротовую полость поднявшийся корень языка и плотно прилегающие к нему дужки. Вслед за по­ступлением пищевого комка в глотку происходит сокращение мыщц, суживающих ее просвет выше пищевого комка, вследствие чего он продвигается в пищевод. Этому способствует разность дав­ления в полостях глотки и пищевода.

Перед глотанием глоточно-пищеводный сфинктер закрыт, во время глотания давление в глотке повышается до 45 мм рт. ст., сфинктер открывается, и пищевой комок поступает в начало пище вода, где давление не более 30 мм рт. ст. Первые две фазы акта глотания длятся около 1 с. Фазу II глотания нельзя выполнить произвольно, если в полости рта нет пищи, жидкости или слюны. Если механически раздражать корень языка, то произойдет гло­тание, которое произвольно остановить нельзя. В фазу II вход в гортань закрыт, что предотвращает обратное движение пищи и попадание ее в воздухоносные пути.

Фазу III глотания составляют прохождение пищи по пищеводу и перевод ее в желудок сокращениями пищевода. Движения пище­вода вызываются рефлекторно при каждом глотательном акте. Продолжительность фазы III при глотании твердой пищи 8—9 с, жидкой 1—2 с. В момент глотания пищевод подтягивается к зеву и начальная его часть расширяется, принимая пищевой комок. Сокращения пищевода имеют волновой характер, возникают в верхней его части и распространяются в сторону желудка. Такой тип сокращений называется перистальтическим. При этом после­довательно сокращаются кольцеобразно расположенные мышцы пищевода, передвигая перетяжкой пищевой комок. Перед ним дви­жется волна пониженного тонуса пищевода (релаксационная). Скорость ее движения несколько больше, чем волны сокращения, и она достигает желудка за 1—2 с.

Первичная перистальтическая волна, вызываемая актом глота­ния, доходит до желудка. На уровне пересечения пищевода с дугой аорты возникает вторичная волна, вызываемая первичной волной. Вторичная волна также продвигает пищевой комок до кардиальной части желудка. Средняя скорость ее распространения по пи­щеводу 2—5 см/с, волна охватывает участок пищевода длиной 10— 30 см за 3—7 с. Параметры перистальтической волны зависят от свойств проглатываемой пищи. Вторичная перистальтическая вол­на может быть вызвана остатком пищевого комка в нижней трети пищевода, благодаря чему он переводится в желудок. Перисталь­тика пищевода обеспечивает глотание и вне содействия ему сил гравитации (например, при горизонтальном положении тела или вниз головой, а также в условиях невесомости у космонавтов).

Прием жидкости вызывает глотание, которое в свою очередь формирует релаксационную волну, и жидкость переводится из пи­щевода в желудок не за счет пропульсивного его сокращения, а с помощью гравитационных сил и повышения давления в полости рта. Лишь последний глоток жидкости завершается прохождением пропульсивной волны по пищеводу.

Регуляция моторики пищевода осуществляется в основном эфферентными волокнами блуждающего и симпатиче­ского нервов; большую роль играет его интрамуральная нервная система.

Вне глотания вход из пищевода в желудок закрыт нижним пи­щеводным сфинктером. Когда релаксационная волна достигает конечной части пищевода, сфинктер расслабляется и перисталь­тическая волна проводит через него пищевой комок в желудок. При наполнении желудка тонус кардии повышается, что предотвращает забрасывание содержимого желудка в пищевод. Пара­симпатические волокна блуждающего нерва стимулируют пери­стальтику пищевода и расслабляют кардию, симпатические волок­на тормозят моторику пищевода и повышают тонус кардии. Одно­стороннему движению пищи способствует острый угол впадения пищевода в желудок. Острота угла увеличивается при наполнении желудка. Клапанную роль выполняет губовидная складка слизис­той оболочки в месте перехода пищевода в желудок, сокращения косых мышечных волокон желудка и диафрагмально-пищеводная связка.

При некоторых патологических состояниях тонус кардии сни­жается, перистальтика пищевода нарушается и содержимое же­лудка может забрасываться в пищевод. Это вызывает неприятное ощущение, называемое изжогой. Нарушением глотания является аэрофагия — избыточное заглатывание воздуха, что чрезмерно по­вышает внутрижелудочное давление, и человек испытывает дис­комфорт. Воздух выталкивается из желудка и пищевода, часто с характерным звуком (отрыгивание).

 

18. Моторная деятельность желудка и ее регуляция. Переход содержимого желудка в двенадцатиперстную кишку. Особенности моторики желудка у детей.

Во время и в первые минуты после приема пищи желудок рас­слабляется — наступает пищевая рецептивная релаксация желудка (рис. 9.12), которая способствует депонированию пищи в желудке и его секреции. Спустя некоторое время в зависимости от вида пищи сокращения усиливаются, при этом наименьшая сила сокра­щения отмечается в кардиальной части желудка и наибольшая — в антральной. Сокращения желудка начинаются на большой кри­визне в непосредственной близости от пищевода, где находится кардиальный водитель ритма. Второй водитель ритма локализован в пилорической части желудка.

При баллонной гастрографии (рис. 9.13) регистрируется три типа волн сокращений желудка: I — однофазные волны низкой амплитуды, давление колеблется от 1—2 до 5—10 мм рт. ст., длительностью 5—20 с; II — однофазные волны большой амплиту­ды, давление составляет 40—80 мм рт. ст., длительностью 12— 60 с; III — сложные волны, возникают на фоне меняющегося ис­ходного давления. Волны I и II типов носят перистальтический характер, поддерживают определенный тонус желудка, обеспечи­вают смешивание пищи с желудочным соком в непосредственной близости к слизистой оболочке желудка. Средняя частота этих волн 3 в 1 мин. В центральной части желудка содержимое не пере­мешивается, поэтому пища, принятая в разное время, располагает­ся в желудке слоями (стратификация). Волны III типа характер­ны для пилорической части желудка, носят пропульсивный харак­тер и участвуют в эвакуации содержимого в двенадцатиперстную кишку.

При регистрации внутрижелудочного давления методом откры­тых катетеров выявляются сокращения желудка двух типов: фа­зовые (тип А) и тонические (тип Б). Волны типа А быстрые, пе­ристальтические, продолжительностью 10—20 с с частотой около 3 в 1 мин, волны типа Б — медленные, тонические, длительностью до 2 мин. Волны типа А бывают двух видов, первые имеют ампли­туду и колебание давления от 1 до 15 мм рт. ст., у вторых ампли­туда и колебание давления 16—30 мм рт. ст. Тонические волны (тип Б) могут сочетаться и не сочетаться с фазовыми.

В наполненном пищей желудке возникают три основных вида движений: перистальтические волны, систолические сокращения пилорического отдела и тонические, уменьшающие размер полости дна и тела желудка. Частота перистальтических сокращений около 3 в 1 мин; они распространяются от кардиальной части желудка к пилорической со скоростью около 1 см/с, быстрее по большой, чем по малой кривизне, длятся около 11/2 с. В пилорической части скорость распространения перистальтической волны увеличивается до 3—4 см/с.

После приема пищи и в зависимости от ее вида параметры мо­торной деятельности желудка приобретают характерную динамику. В течение первого часа перистальтические волны слабые, в даль­нейшем они усиливаются (в пилорическом отделе увеличиваются их амплитуда и скорость распространения), проталкивая пищу к выходу из желудка. Давление в пилорическом отделе повышает­ся до 10—25 см вод. ст., открывается сфинктер привратника (пилорический сфинктер), и порция желудочного содержимого переходит в двенадцатиперстную кишку. Оставшееся (большее) количество его возвращается в проксимальную часть пилорическо­го отдела желудка. Такие движения желудка обеспечивают пере­мешивание и перетирание (фрикционный эффект) пищевого со­держимого, его гомогенизацию. Характер, интенсивность, времен­ная динамика моторики зависят от количества и вида пищи, от эф­фективности ее переваривания в желудке и кишечнике, обеспечи­вается регуляторными механизмами.

Регуляция моторики желудка. Раздражение блуждающих нер­вов и выделение АХ усиливают моторику желудка: увеличивают ритм и силу сокращений, ускоряют движение перистальтических волн. Влияния блуждающих нервов могут оказывать и тормозной эффект: рецептивная релаксация желудка, снижение тонуса пило­рического сфинктера. Раздражение симпатических нервов и акти­вация α-адренорецепторов тормозят моторику желудка: уменьша­ют ритм и силу его сокращений, скорость движения перистальти­ческой волны. Описаны и стимулирующие α- и β-адренорецепторные влияния (например, на пилорический сфинктер). Двунаправ­ленные влияния осуществляются пептидергическими нейронами. Названные типы влияний осуществляются рефлекторно при раз­дражении рецепторов рта, пищевода, желудка, тонкой и толстой кишки. Замыкание рефлекторных дуг осуществляется на различ­ных уровнях ЦНС, в периферических симпатических ганглиях и интрамуральной нервной системе.

В регуляции моторики желудка велико значение гастроинтестинальных гормонов. Моторику желудка усиливают гастрин, мотилин, серотонин, инсулин, а тормозят — секретин, ХЦК, глюкагон, ЖИП, ВИП. Механизм их влияний на моторику прямой (не­посредственно на мышечные пучки и миоциты) и опосредованный через интрамуральные нейроны. Моторика желудка зависит от уровня его кровоснабжения и сама влияет на него, изменяя со­противление кровотоку при сокращениях желудка.

 

19. Движения тонкой кишки, их виды и регуляция. Переход содержимого тонкой кишки в толстую. Регуляция моторной функции тонкого кишечника симпатическими и парасимпатическими нервами. Роль интрамуральных нервных сплетений.

Моторика тонкой кишки регулируется миогенными, нервными и гуморальными механизма­ми. Миогенные механизмы обеспечивают автоматию кишечных мышц и сократительную реакцию на растяжение кишки. Однако организованная фазная сократительная деятельность стенки кишки реализуется нейронами мышечно-кишечного миэнтерального (ауэрбахово) нервного сплетения, обладающими ритмической фоновой активностью. Кроме осцилляторов энтеральных метасимпатических узлов имеются два «датчика» ритма кишечных со­кращений — первый у места впадения в двенадцатиперстную киш­ку общего желчного протока, второй — в подвздошной кишке. Деятельность этих «датчиков» и узлов энтерального нервного спле­тения контролируется нервными и гуморальными механизмами.

Парасимпатические влияния преимущественно усиливают, сим­патические тормозят моторику тонкой кишки. Описаны пептидергические нервные влияния обоих типов. Эффекты раздражения вегетативных нервов в большой мере зависят от состояния кишки, на фоне которого производятся раздражения. Моторику изменяют раздражения спинного и продолговатого мозга, гипоталамуса, лимбической системы, коры больших полушарий. Раздражения ядер передних и средних отделов гипоталамуса преимущественно воз­буждают, а заднего — тормозят моторику желудка, тонкой и тол­стой кишки.

Акт еды тормозит, а затем усиливает кишечную моторику. В дальнейшем она определяется физическими и химическими свойствами химуса: грубая, богатая неперевариваемыми в тонкой кишке пищевыми волокнами и жирами пища ее усиливает.

Местными раздражителями, усиливающими моторику кишки, являются продукты переваривания питательных веществ, особенно жиры, кислоты, щелочи, соли (в концентрированных растворах).

Важное значение для моторики тонкой кишки имеют рефлексы с различных отделов пищеварительного тракта: пищеводно-кишечный (возбуждающий), желудочно-кишечный (возбуждающий и тормозящий), ректоэнтеральный (тормозящий).

Дуги этих рефлексов замыкаются на различных уровнях. В целом моторная деятельность любого участка тонкой кишки есть суммарный ре­зультат местных, удаленных влияний в пределах пищеварительно­го тракта (преимущественно возбуждающих влияний с прокси­мальных и тормозных — с дистальных его отделов относительно раздражаемого участка) и влияний с других систем организма. Гуморальная регуляция. Серотонин, гистамин, гастрин, мотилин, ХЦК, вещество Р, вазопрессин, окситоцин, брадикинин и др., действуя на миоциты или энтеральные нейроны, усиливают, а секретин, ВИП, ГИП и др. тормозят моторику тонкой кишки.

 

20. Процессы, происходящие в толстой кишке. Движения толстой кишки. Влияние вегетативных нервов и интрамуральных нервных сплетений.

Из тонкой кишки химус через илеоцекальный клапан, или сфинктер, — баугиниеву заслонку — порциями переходит в тол­стую кишку. Сфинктер имеет сложное строение и выполняет роль клапана. Он устроен как губы-складки, суженной частью обращен­ные в просвет слепой кишки, т. е. подвздошная кишка инвагинирована в слепую. Здесь же сосредоточены циркулярные мышцы сфинктера. Его расслаблению и раскрытию илеоцекального про­хода способствуют сокращения продольных мышц тонкой и тол­стой кишки. При наполнении слепой кишки и ее растяжении сфинктер закрывается и в норме содержимое толстой кишки в тонкую кишку не возвращается.

Вне пищеварения илеоцекальный сфинктер закрыт, но спустя 1—4 мин после приема пищи каждые '/2—1 мин он открывается и химус небольшими порциями (до 15 мл) поступает в толстую кишку. Раскрытие сфинктера происходит рефлекторно: перисталь­тическая волна тонкой кишки повышает давление в ней и расслаб­ляет илеоцекальный сфинктер и обычно — сфинктер привратника (бисфинктерный рефлекс). Повышение давления в толстой кишке увеличивает тонус илеоцекального сфинктера и тормозит поступ­ление в толстую кишку содержимого тонкой кишки.

За сутки у здорового человека из тонкой в толстую кишку переходит 0,5—4,0 л химуса.

Пища почти полностью переваривается и всасывается в тон­кой кишке. Небольшое количество веществ пищи, в том числе клетчатка и пектин, в составе химуса подвергаются гидролизу в толстой кишке. Гидролиз осуществляется ферментами химуса, микроорганизмов и сока толстой кишки.

Сок толстой кишки в небольшом количестве выделяется вне ее раздражения. Местное механическое раздражение слизистой оболочки увеличивает секрецию в 8—10 раз. Сок состоит из жид­кой и плотной частей, имеет щелочную реакцию (рН 8,5—9,0). Плотную часть сока составляют слизистые комочки из отторгну­тых кишечных эпителиоцитов и слизи, секретируемой бокаловид­ными клетками.

Основное количество ферментов содержится в плотной части сока; их активность значительно меньше, чем в тонкой кишке, хотя  спектры ферментов близки. В соке толстой кишки нет энтерокиназы и сахаразы, щелочной фосфатазы содержится в 15—20 раз меньше, чем в соке тонкой кишки. В соке толстой кишки содер­жится небольшое количество катепсина, пептидазы, липазы, ами­лазы и нуклеазы.

С участием этих ферментов в проксимальной части толстой кишки происходит гидролиз питательных веществ. В зависимости от осмотического и гидростатического давления кишечного содер­жимого интенсивно всасывается вода (до 4—6 л за сутки). Химус постепенно превращается в каловые массы (за сутки выводится 150—250 г сформированного кала). При употреблении раститель­ной пищи их больше, чем после приема смешанной или мясной пищи. Если пища богата неперевариваемыми волокнами (целлюло­за, гемицеллюлоза, пектин, лигнин), то количество кала увеличи­вается не только за счет них, но и вследствие ускорения передви­жения химуса и формируемого кала, что предотвращает запоры и их патогенные последствия.

Весь процесс пищеварения у взрослого человека длится 1— 3 сут, из них наибольшее время приходится на пребывание остат­ков пищи в толстой кишке. Ее моторика обеспечивает резервуарную функцию — накопление содержимого, всасывание из него ряда веществ, в основном воды, продвижение его, формирование каловых масс и их удаление (дефекация).

У здорового человека контрастная масса через 3—З'/2 ч после ее приема начинает поступать в толстую кишку, которая заполня­ется в течение 24 ч и полностью опорожняется за 48—72 ч.

Содержимое слепой кишки совершает небольшие и длитель­ные перемещения то в одну, то в другую сторону за счет медлен­ных сокращений кишки. Для толстой кишки характерны сокраще­ния нескольких типов: малые и большие маятникообразные, пе­ристальтические и антиперистальтические, пропульсивные. Первые четыре типа сокращений обеспечивают перемешивание содержимо­го кишки и повышение давления в ее полости, что способствует сгущению содержимого путем всасывания воды. Сильные пропуль­сивные сокращения возникают 3—4 раза в сутки и продвигают ки­шечное содержимое в дистальном направлении.

Толстая кишка имеет интра- и экстрамуральную иннервацию, играющую ту же роль, что и у тонкой кишки. Толстая кишка по­лучает парасимпатическую иннервацию в составе блуждающих и тазовых нервов; парасимпатические влияния усиливают моторику путем условных и безусловных рефлексов при раздражении пище­вода, желудка и тонкой кишки. Симпатические нервы проходят в составе чревных нервов и тормозят моторику кишки.

Ведущее значение в организации моторики толстой кишки име­ют интрамуральные нервные механизмы при местном механическом и химическом раздражении толстой кишки ее содержимым. Раздражение механорецепторов прямой кишки тормозит мото­рику вышележащих отделов тонкой кишки. Тормозят ее и серотонин, адреналин, глюкагон.

 

21. Акт дефекации. Работа внутреннего и наружного сфинктеров прямой кишки. Рефлекторная регуляция акта дефекации.

Дефекация — опорожнение толстой кишки от каловых масс наступает в результате раздражения рецепторов прямой кишки на­копившимися в ней каловыми массами. Позыв на дефекацию воз­никает при повышении давления в прямой кишке до 40—50 см вод. ст. Давление 20—30 см вод. ст. вызывает чувство наполнения прямой кишки. Сфинктеры прямой кишки — внутренний, состоя­щий из гладких мышц, и наружный, образованный поперечнополо­сатой мускулатурой, вне дефекации находятся в состоянии тони­ческого сокращения. В результате рефлекторного расслабления этих сфинктеров, перистальтических сокращений кишки, сокраще­ния мышцы, поднимающей задний проход (m. levator any), укора­чивающей дистальную часть прямой кишки, сокращений ее кольце­вых мышц кал выбрасывается из прямой кишки. В этом большое значение имеет так называемое натуживание, при котором сокра­щаются мышцы брюшной стенки и диафрагмы, повышается внут-рибрюшное давление, достигающее при акте дефекации 220 см вод. ст. Первичная рефлекторная дуга от рецепторов прямой кишки замыкается в пояснично-крестцовом отделе спинного мозга (рис. 9.19). Эта рефлекторная дуга обеспечивает непроизвольный акт дефекации. Произвольный акт осуществляется при участии ко­ры больших полушарий мозга, центров продолговатого мозга и гипоталамуса.

Из спинального центра дефекации по парасимпатическим нервным волокнам в составе тазового нерва поступают импульсы, тормозящие тонус сфинктеров и усиливающие моторику прямой кишки, стимулируя акт дефекации. Симпатические нервные влия­ния повышают тонус сфинктеров и тормозят моторику прямой кишки.

Произвольный компонент акта дефекации состоит в нисходя­щих влияниях головного мозга на спинальный центр, в расслабле­нии наружного сфинктера, сокращении диафрагмы и брюшных мышц. У большинства здоровых людей акт дефекаций совершает­ся 1—2 раза в сутки.

 

22. Периодическая деятельность пищеварительного тракта натощак.

В пищеварительном тракте условно выделяют несколько рит­мов: базальные (секундные) ритмы с частотой 3—30 и более циклов в 1 мин; ритмы частотой 7—14 и 1 —14 и более циклов в сутки, приуроченные к темновому и световому периодам и свя­занные со временем приема пищи.

В лаборатории И. П. Павлова в хронических опытах на фи­стульных собаках В. Н. Болдыревым (1902) были открыты ритмы, названные периодической моторной деятельностью желудка. У че­ловека через каждые 45—90 мин покоя — отсутствия сокращения желудка, наступает период его работы — сокращения, длящийся 20—50 мин. В моторной периодике принято различать 3 периода, или фазы: I — покоя; II — нерегулярных сокращений; III — регу­лярных сокращений (фронтальная активность).

В последние годы под термином «мигрирующий миоэлектрический (или моторный) комплекс» понимают перемещение мио-электрической, или сократительной, активности от желудка и двенадцатиперстной кишки до терминальной части подвздошной киш­ки.

Периодическая деятельность органов пищеварения проявляется не только в моторной активности пищеварительного тракта, но и секреции слюнных, желудочных, поджелудочных и кишечных же­лез, усилении желчеотделения и желчевыделения.

Синхронно с периодической деятельностью пищеварительного тракта изменяются интенсивность обмена веществ организма, тем­пература тела, количество форменных элементов крови, концен­трация гормонов и ферментативная активность крови, электро­энцефалографические показатели. Это свидетельствует о вовлече­нии в данный ритм периодической деятельности пищеваритель­ного тракта всего организма.

Физиологическая роль периодической деятельности пищева­рительного тракта полностью не установлена. Согласно одной из ранних гипотез, фазы работы периодической деятельности — сокращения желудка — вызывают чувство голода, поэтому ее на­звали голодной периодикой. В классическом виде моторная пери­одика регистрируется только натощак. Прием пищи тормозит и существенно трансформирует ее, однако синхронность чувства голода и фазы работы периодики необязательна.

Допускают также, что физиологическим назначением периоди­ческой деятельности является транспорт из пищеварительных желез в кровь ферментов, изменяющих метаболизм организма. Еще одна гипотеза отводит периодической деятельности роль вы­ведения из крови в полость пищеварительного тракта продуктов метаболизма. Достаточно популярна гипотеза о том, что периоди­ческая деятельность своими перистальтическими волнами очищает пищеварительный тракт от остатков пищи и эндогенных веществ. Моторная периодика рассматривается как механизм предотвраще­ния распространения кишечной микрофлоры в оральном на­правлении. Надо принять во внимание и то, что в ходе периодической сек­реции в пищеварительный тракт поступает значительное количест­во ферментов, которым затем предстоит осуществлять полостное и пристеночное пищеварение. Периодическая активность желез под­держивает их в состоянии некоторого оперативного покоя — го­товности ответить выраженной секреторной реакцией на стимулы приема пищи.

В пищеварительный тракт в составе секретов и слущивающихся эпителиоцитов поступает много веществ (в том числе белков), представляющих большую пластическую и энергетическую цен­ность для организма. В пищеварительном тракте эти вещества под­вергаются гидролизу, всасываются и утилизируются организмом. В связи с этим выдвинута гипотеза, согласно которой периодичес­кая деятельность направлена на обеспечение эндогенного питания организма в условиях физиологического голода.

Перечень основных возможных назначений периодической де­ятельности пищеварительного тракта свидетельствует, что она осуществляет пищеварительные и непищеварительные функции в период между приемами пищи, но в несколько измененном виде. Она является одним из проявлений цикличности деятельности всего организма и участвует в обеспечении его гомеостаза. В ос­нове периодической деятельности лежат периферические и цент­ральные, рефлекторные и гормональные механизмы.

 

 

23. Всасывание различных продуктов переваривания пищи в различных отделах пищеварительного тракта.

Всасывание — процесс транспорта компонентов пищи из полости пищеварительного тракта во внутреннюю среду, кровь и лимфу организма. Всосавшиеся вещества разносятся по организму и включаются в обмен веществ тканей. В полости рта химическая обработка пищи сводится к частичному гидролизу углеводов  амилазой слюны, при котором крахмал расщепляется на декстрины, мальтоолигосахариды и мальтозу. Кроме того, время пре­бывания пищи в полости рта незначительно, поэтому всасывания здесь практически не происходит. Однако известно, что некоторые фармакологические вещества всасываются быстро, и это находит применение как способ введения лекарственных веществ.

В желудке всасывается небольшое количество аминокислот,  глюкозы, несколько больше воды и растворенных в ней минеральных солей, значительно всасывание растворов алкоголя. Всасывание питательных веществ, воды, электролитов осуществляется в основном в тонкой кишке и сопряжено с гидролизом питательных веществ. Всасывание зависит от величины поверхности, на которой оно осуществляется. Особенно велика по­верхность всасывания в тонкой кишке. У человека поверхность слизистой оболочки тонкой кишки увеличена в 300—500 раз за счет складок, ворсинок и микроворсинок.

Всасывание различных веществ осуществляется разными механизмами.

Всасывание макромолекул и их агрегатов происходит путем фагоцитоза и пиноцитоза. Эти механизмы относятся к эндоцитозу. С эндоцитозом связано внутриклеточное пищеварение, однако ряд веществ, попав в клетку путем эндоцитоза, транспортируется в везикуле через клетку и выделяется из нее путем экзоцитоза в межклеточное пространство. Такой транспорт веществ назван трансцитозом. Он, видимо, из-за небольшого объема не имеет существенного значения во всасывании питательных веществ, но важен в переносе иммуноглобулинов, витаминов, ферментов и т. д. из кишечника в кровь.

Некоторое количество веществ может транспортироваться по межклеточным пространствам. Такой транспорт называется персорбцией.  С помощью персорбции переносятся часть воды и электролитов, а также другие вещества, в том числе белки (антитела, аллергены, ферменты и т. п.) и даже бактерии.

В процессе всасывания микромолекул — основных продуктов гидролиза питательных веществ в пищеварительном тракте, а также электролитов участвует три вида транспортных механизмов: пассивный транспорт, облегченная диффузия и активный транспорт. Пассивный транспорт включает в себя диффузию, осмос и фильтрацию. Облегченная диффузия осуществляется с помощью особых мембранных переносчиков и не требует затраты энергии. Активный транспорт — перенос веществ через мембраны против электрохимического или концентрационного градиента с затратой энергии и при участии специальных транспортных систем (мембранные транспортные каналы, мобильные переносчики, конформационные переносчики).

Скорость всасывания зависит от свойств кишечного содержимого. Так, при прочих равных условиях всасывание идет быстрее при нейтральной реакции этого содержимого, чем при кислой и щелочной; из изотонической среды всасывание электролитов и питательных веществ происходит быстрее, чем из гипо- и гипертонической среды.

Всасывание питательных веществ в толстой кишке незначительно, так как при нормальном пищеварении большая часть их уже всосалась в тонкой кишке. В толстой кишке всасывается большое количество воды, в небольшом количестве могут всасываться глюкоза, аминокислоты и некоторые другие вещества. На этом основано применение так называемых питательных клизм, т. е. введение легкоусвояемых питательных веществ в прямую кишку.

Всасывание продуктов гидролиза белков. Белки всасываются в основном в кишечнике после их гидролиза до аминокислот. Всасывание различных аминокислот происходит с неодинаковой скоростью в различных отделах тонкой кишки. Всасывание углеводов.

Всасывание углеводов происходит в основном в тонкой кишке. С наибольшей скоростью всасываются гексозы, а в их числе глюкоза и галактоза, пентозы всасываются медленнее. Всасывание глюкозы и галактозы осуществляется путем активного транспорта через апикальные мембраны кишечных эпителиоцитов. Они обладают высокой избирательной способностью во всасывании различных углеводов.

Всасывание продуктов гидролиза липидов. Всасывание различных жиров зависит от их эмульгирования и гидролиза и наиболее активно происходит в двенадцатиперстной кишке и проксимальной части тощей кишки.

 

24. Переваривание белков в различных отделах желудочно-кишечного тракта. Ферменты, участвующие в этом процессе. Всасывание белков, его механизм. Система переноса аминокислот.

Белки имеют особое значение для организма. Они обладают двумя функциями :

  1. Пластическая – входят в состав всех веществ,
  2. Энергетическая – 1 г белка дает 4,0 ккал (16,7 кДж), 1 ккал = 4,1185 кДж.

 

   Нормы суточного потребления отличаются в разных странах : 1-1,5 г/кг в России,  0,5-0,8 г/кг – США. Для детей – от 1 до 4 лет – 4 г/кг, так как ребенок растет.

   Организм получает белок из двух источников :

  • Экзогенный белок – белок пищи – 75-120 г/сутки
  • Эндогенный белок – секреторные белки, белки кишечного эпителия – 30 – 40 г/сутки.

   Эти источники обеспечивают поступление белка в пищеварительный тракт, где будет происходит его расщепление до аминокислот. Распад аминокислот происходит в печени – дезаминирование, трансаминирование, когда аминокислота теряет группу и превращается в аммиак, аммоний или мочевину, и эти продукты подлежат выведению из организма.

 

  Особенностью белка является то, что он построен из 20 аминокислот. Аминокислоты могут быть заменимыми и незаменимыми(не могут синтезироваться в организма – триптофан, лизин, лейцин, валин, изолейцин, треонин, метионин, фенилаланин, гистидин и аргинин). Полноценные белки – содержат незаменимые аминокислоты. Неполноценные белки – содержат не все незаменимые аминокислоты.

  Биологическая ценность белка – под ней понимается то количество белка, специфическое для данного организма, которое образуется из 100 г поступившего белка с пищей. Молоко – 100, кукуруза – 30, пшеничного хлеба — 40.

   Аминокислоты, которые образуются в кишечнике в ходе расщепления белка подвергаются процессам всасывания, причем для аминокислот существуют специфические натрий зависимые переносчики. Такой комплекс проходит через мембрану. Аминокислоты поступят в кровь, а натрий будет в натрий – калиевой АТФазе (насоса), который поддерживает градиент для натрия. Такой транспорт называется вторично активным. L-изомеры аминокислот проникают легче, чем D. На транспорт аминокислот влияет строение молекулы. Легко проходит аргинин, метионин, лейцин. Фенилаланин проникает медленней. Очень плохо всасывается аланин и серин. Одни аминокислоты могут способствовать прохождению других. Например глицин и метионин облегчают поход друг другу.

   Распад осуществляется в печени. Основной путь распада – дезаминирование, в ходе которого образуются без азотистый остаток и образуется азотистые соединения. Без азотистые осадки могут превращаться в углеводы и жиры и затем использовать в ходе получения энергии. Азотистые соединения удаляются с мочой. Второй путь  - это трансаминирование. Идет с участием трансаминаз. При повреждении клеток трансаминазы могут проходить в плазму крови. При гепатитах, инфарктах увеличивается содержание трансаминаз в крови. Это диагностический признак.

 

Метод азотистого баланса.

   Отложить азот про запас не возможно. В крови запас аминокислот составляет 35-65мг %. Существует понятие минимума (1 г на 1кг веса). Азот в белке содержится в строго определенных соотношения   - 1 г азота содержится в 6,25 г белка. Для определения азотистого баланса нужно знать поступление белка с пищей. Часть белка пройдет через ЖКТ транзитом. Нужно определить азот кала. По разнице азота пищи и азота кала, мы определим азот усвоенного белка, т.е. тот, который поступил в кровь и пошел в реакции обмена. Распавшийся белок оценивается по азоту мочи. Азотистый баланс оценивается между усвоенным и распавшимся :

 A-B=C.

 Состояние азотистого баланса:

l  А-B=C – азотистое равновесие, у здорового взрослого человека с достаточным потреблением белка с пищей. Чтобы поддержать надо употреблять 1 г белка на кг веса. Но это равновесие может быть не устойчиво – стресс, физическая работа, тяжелые заболевания.

l  Белковый оптимум – 1,5 кг тела. Из этого нужно строить свой рацион

l  А-B>C – положительный азотистый баланс. Это состояние характерно у растущего организма. Задержка белка в организме, и он расходуется на процессы роста. Это может быть состояние при тренировках – нарастание массы мышц. Процесс восстановления организма после заболевания, при беременности.

l  A-B<С. Распад преобладает над усвоением – отрицательный азотистый баланс – в старческом возрасте, пр белковом голодании или употреблении не полноценных белков и при тяжелых заболеваниях, сопровождающихся распадом ткани.

 

25. Переваривание углеводов в различных отделах желудочно-кишечного тракта и ферменты, участвующие в этом процессе. Всасывание углеводов, его механизм.

Человек получает углеводы в трёх формах. Это :

  1. Дисахарид сахарозы
  2. Дисахарид лактозы
  3. Полисахариды
  • Амилоза с неразветвленной цепью
  • Аминопептин – с разветвленной цепью
  • Целлюлоза – с растительными продуктами. Но нет фермента для ее расщепления

    Суточное потребление углеводов составляет от 250 до 800, 7 г.кг.сутки. Энергетическая ценность глюкозы составляет 1г., глюкозы – 3,75 ккал. или 15,7 кДж.

  В пищеварительном тракте углеводы распадаются до моносахаридов, которые подвергаются всасыванию. Начальное расщепление осуществляется амилазой слюны. Основное переваривание в тонкой кишке. Поджелудочная амилаза расщепляет углеводы до олигосахаридов. Далее расщепляются до моносахаридов углеводистыми ферментами в тонкой кишке. Здесь имеются 4 фермента – мальтаза, изомальтаза, лактаза и сахараза.

Конечные продукты расщепления – фруктоза, глюкоза и галактоза. Галактоза и фруктоза отличаются от глюкозы положением групп H и OH. Всасывание – вторичный натрий зависимый транспорт. Переносчики для углеводов присоединяют глюкозу и 2 иона натрия и такой комплекс проходит в клетку за счет разницы концентраций и зарядов натрия. Фруктоза проникает путем облегченной диффузии. Причем внутри клеток эпителия фруктоза превращается в глюкозу и молочную кислоту. Это поддерживает градиент для преодоления глюкозы. Кишечник может всосать до 5 кг углеводов в день. Если нарушается процесс всасывания, то изменяется осмотическое давление(повышается), вода выходит в просвет кишечника – понос. Углеводы подвергаются брожению с образованием газов. Водород, метан и углекислый газ. Они являются раздражающими для слизистой оболочки. На мембране кишечного эпителия – недостаток лактазы, который расщепляет молочный сахар. Очень тяжелое состояние для детей. Если нет лактазы – проблемы с кишечником.

 

Пути использования моносахаридов в организме.

   Они поступают в кровь и образуют сахар крови с нормальным содержанием 3,3-6,1 ммоль/л  или 70-120 мг %. Далее поступают в печень и откладываются в виде гликогена. Могут превращаться в гликоген мышц и использоваться при мышечном сокращении. Углеводы могут превращаться в жиры и откладываться в жировых депо, что используется для вскармливания сельскохозяйственнных животных. Углеводы могут превращаться в аминокислоты при присоединение NH2. Они служат энергетическим источником. Для синтеза гликолипидов, гликопротеинов. Поддержание уровня сахара в крови происходит за счет гормонов поджелудочной железы – инсулин (способствует отложению гликогенов), глюкагон – появляется при снижении уровня глюкозы в крови, способствует распаду гликогена в печени. Содержание сахара увеличивает адреналин – увеличивает распад гликогена. Глюкокортикоиды – стимулируют процессы глюконеогенеза. Тироксин(щитовидная железа) Усиливает всасывание глюкозы в кишечнике.

 

26. Переваривание и всасывание жиров. Механизмы всасывания. Значение желчных кислот. Превращение жиров в энтероцитах.

Мужчина -12-18 %, свыше 20% - ожирение, женщина 18-24% , свыше 25% - ожирение.

Суточное потребление жира – от 25 до 160 г или 1 г жира на 1 кг веса. Энергетическая ценность 1 г жира – 9,0 ккал или 37,7 кДж.

 

Этапы превращения  жиров  в организме.

  1. Эмульгирование(образование капель размером 0,5-1 мкм)
  2. Расщепление липазами до глицерина и жирных кислот
  3. Образование мицелл(4-6 нм в диаметре) которые содержат – глицерин, жирные кислоты, желчные соли, лецитин, холестерин, жирорастворимые витамины А,Д,Е,К
  4. Всасывание мицелл в энтероциты.
  5. Далее идет образование хиломикронов (до100 нм в диаметре), которые содержат – триглицерилы – 86%, холестерин – 3%, фосфолипиды – 9%, протеины -2 %, витамины.
  6. Извлечение из крови хиломикронов при участии фермента липопротеиновой липазы и кофермента гепарина.
  7. Распад эногенных жиров в жировых клетках происходит под влиянием гормон-зависимой липазы , которая активируется – адреналином, норадреналином, АКТГ, тиреотропным, лютеотропным гормонными, вазопрессином и серотонином.
  8. тормозится – инсулином, простагланином Е.

   Комплексы с липопротеинами низкой плотности очень легко проникают через стенку кровеносных сосудов, что приводит к атеросклерозу. Липопротеиы высокой плотности – там развитие атеросклероза меньше. Липопротеины высокой плотности увеличиваются при :

  • регулярной физической нагрузке
  • у тех ,кто не курит.

   Вещества, образующиеся из ненасыщенных жирных кислот – арахидоновой, линолевой и линоленовой, содержат в своем составе 20 атомов углевода :

  1. Простогландины
  2. Лейкотриены
  3. Простациклеин
  4. Тромбоксан А2 и Б2
  5. Липоксины А и Б.

  Лейкотриены – это медиаторы аллергических и воспалительных реакций. Они вызывают сужение бронхов, сужение артериолл, повышение проницаемости сосудов, выход нейтрофилов и эозинофилов в очаг воспаления.

   Липоксин А – расширяет микроциркуляторные сосуды, оба липоксина А и Б тормозят цитотоксический эффект Т-киллеров.

 

27. Всасывание витаминов, воды, минеральных солей и микроэлементов в желудочно-кишечном тракте. Механизмы всасывания.

Всасывание различных веществ в тонкой кишке

Всасывание воды и минеральных солей. Вода поступает в пи щеварительный тракт в составе пищи и выпиваемых жидкостей (2—2,5 л), секретов пищеварительных желез (6—7 л), выводится же с калом 100—150 мл воды. Все остальное количество воды всасывается из пищеварительного тракта в кровь, небольшое количество — в лимфу. Всасывание воды начинается в желудке, но наиболее интенсивно оно происходит в тонкой и особенно толстой кишке (за сутки около 8 л).

Некоторое количество воды всасывается по осмотическому градиенту, хотя вода всасывается и при отсутствии разности осмотического давления. Основное количество воды всасывается из изотонических растворов кишечного химуса, так как в кишечнике гипер- и гипотонические растворы достаточно быстро концентрируются или разводятся. Абсорбция воды из изотонических и гипертонических растворов требует затраты энергии. Активно всасываемые эпителиоцитами растворенные вещества «тянут» за собой воду. Решающая роль в переносе воды принадлежит ионам, особенно Na+, поэтому все факторы, влияющие на его транспорт, изменяют и всасывание воды.

За счет энергии, освобождаемой в тонкой кишке при гликолизе и окислительных процессах, усиливается всасывание воды. Наиболее интенсивно всасывание натрия и воды в кишке осуществляется при рН 6,8 (при рН 3 всасывание воды прекращается).

Изменяют всасывание воды рационы питания. Увеличение в нем доли белка повышает скорость всасывания воды, натрия и хлора.

Скорость всасывания воды изменяется в зависимости от гидра-тированности организма. Наркоз (эфиром и хлороформом), а также ваготомия замедляют всасывание воды. Доказано условно-рефлекторное изменение всасывания воды. На ее всасывание влияют многие гормоны желез внутренней секреции и некоторые гастроинтестинальные гормоны (снижают всасывание воды гастрин, секретин, ХЦК, ВИП, бомбезин, серотонин).

Натрий поступает из полости тонкой кишки в кровь как через кишечные эпителиоциты, так и по межклеточным каналам. Поступление ионов Na+ в эпителиоцит происходит по электрохимическому градиенту пассивным путем. . В тонкой кишке переносы ионов Na+ и С1- сопряжены друг с другом, в толстой кишке происходит обмен всасывающегося иона Na+ на ион К+. При снижении содержания в организме натрия его всасывание кишечником резко увеличивается. Всасывание калия происходит в основном в тонкой кишке с помощью механизмов активного и пассивного транспорта по электрохимическому градиенту. Всасывание ионов хлора происходит в желудке и наиболее активно в подвздошной кишке по типу активного и пассивного транспорта. Двузарядные ионы в пищеварительном тракте всасываются очень медленно. Так, в кишечник человека поступает ежесуточно 35 ммоль кальция, но только половина его всасывается. Он всасывается в 50 раз медленнее, чем ион Na , но быстрее, чем двузарядные ионы железа, цинка и марганца. Всасывание кальция совершается с участием переносчиков, активируется желчными кислотами и витамином D, соком поджелудочной железы, некоторыми аминокислотами, натрием, некоторыми антибиотиками.

 

28. Физиологические механизмы чувства голода и насыщения. Голодная периодическая деятельность пищеварительного тракта.

Голод - субъективное выражение объективной пищевой потребности. Биологическое значение чувства голода состоит в том, что он направляет животного и человека на активный поиск и потребление пищи.

      Субъективно голод проявляется в форме жжения, давления и болей в эпигастральной области, иногда тошнотой, легким головокружением. Эмоциональное ощущение голода связано с деятельностью лимбических структур, а также коры больших полушарий. Ощущение голода сопровождается голодной периодикой ЖКТ.

Субъективные и объективные проявления голода связаны с возбуждением пищевого центра, нейроны которого расположены на разных этажах нервной системы.

      В латеральных ядрах гипоталамуса представлен центр голода, а в висцеро-медиальных его ядрах - центр насыщения. Между ними существуют реципрокные отношения.

        Чувство голода с нарушением гомеостаза питательных веществ в крови не связано, оно возникает раньше, чем появляется биохимический сдвиг, обычно уже при запустевании желудка. Ощущение голода формирует мотивацию для осуществления адекватного пищедобывательного поведения.

ПРЕДМЕТЫ

О НАС

«Dendrit» - портал для студентов медицинских ВУЗов, включающий в себя собрание актуальных учебных материалов (учебники, лекции, методические пособия, фотографии анатомических и гистологических препаратов), которые постоянно обновляются по ходу учебного процесса в ЯГМУ.