Регуляция обмена веществ. Механизм передачи гормонального сигнала в клетку.

Тема: "МЕХАНИЗМ ПЕРЕДАЧИ ГОРМОНАЛЬНОГО СИГНАЛА В КЛЕТКУ. ГОРМОНЫ ГИПОТАЛАМУСА И ГИПОФИЗА".

1. Определение понятия "гормоны",  классификация и общие биологические признаки гормонов.

2. Классификация гормонов по химической природе, примеры.

3. Механизмы действия дистантных и проникающих в клетку гормонов.

4. Посредники действия гормонов на обмен веществ - циклические нуклеотиды (цАМФ, цГМФ), ионы Са2+, инозитолтрифосфат, рецепторные белки цитозоля. Реакции синтеза и распада цАМФ.

5. Каскадные механизмы активации ферментов, как способ усиления гормонального сигнала. Роль протеинкиназ.

6. Иерархия гормональной системы. Принцип обратной связи в регуляции секреции гормонов.

7. Гормоны гипоталамуса и передней доли гипофиза: химическая природа, механизм действия, ткани и клетки-мишени, биологический эффект.

23.1. Определение понятия “гормоны” и их классификация по химической природе.

23.1.1. Выучите определение понятия: гормоны – биологически активные соединения, выделяемые железами внутренней секреции в кровь или лимфу и оказывающие влияние на метаболизм клетки.

23.1.2. Запомните основные особенности действия гормонов на органы и ткани:

  • гормоны синтезируются и выделяются в кровь специализированными эндокринными клетками;
  • гормоны обладают высокой биологической активностью - физиологическое действие проявляется при концентрации их в крови порядка 10-6 - 10-12 моль/л;
  • каждый гормон характеризуется присущей только ему структурой, местом синтеза и функцией; дефицит одного гормона не может быть восполнен другими веществами;
  • гормоны, как правило, влияют на отдалённые от места их синтеза органы и ткани.

23.1.3. Гормоны осуществляют своё биологическое действие, образуя комплекс со специфическими молекулами – рецепторами. Клетки, содержащие рецепторы к определённому гормону, называются клетками-мишенями для этого гормона. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматической мембране клеток-мишеней; другие гормоны взаимодействуют с рецепторами, локализованными в цитоплазме и ядре клеток-мишеней. Имейте в виду, что дефицит как гормонов, так и их рецепторов может приводить к развитию заболеваний.

23.1.4. Некоторые гормоны могут синтезироваться эндокринными клетками в виде неактивных предшественников – прогормонов. Прогормоны могут запасаться в большом количестве в специальных секреторных гранулах и быстро активироваться в ответ на соответствующий сигнал.

23.1.5. Классификация гормонов основана на их химическом строении. Различные химические группы гормонов приведены в таблице 23.1.

Таблица 23.1. Химическая природа гормонов
Класс химических веществГормон или группа гормоновОсновное место синтеза
Белки и пептиды Либерины
Статины
Гипоталамус
Вазопрессин
Окситоцин
Гипоталамус*

Тропные гормоны

Передняя доля гипофиза (аденогипофиз)

Инсулин 
Глюкагон
Поджелудочная железа (островки Лангерганса)
Паратгормон Паращитовидные железы
Кальцитонин Щитовидная железа
Производные аминокислот Иодтиронины 
(тироксин, 
трииодтиронин)
Щитовидная железа
Катехоламины 
(адреналин, 
норадреналин)
Мозговой слой надпочечников, симпатическая нервная система
Стероиды Глюкокортикоиды 
(кортизол)
Кора надпочечников
Минералокортикоиды 
(альдостерон)
Кора надпочечников
Андрогены 
(тестостерон)
Семенники
Эстрогены 
(эстрадиол)
Яичники
Прогестины 
(прогестерон)
Яичники

* Местом секреции этих гормонов является задняя доля гипофиза (нейрогипофиз).

Следует иметь в виду, что кроме истинных гормонов выделяют также гормоны местного действия. Эти вещества синтезируются, как правило, неспециализированными клетками и оказывают свой эффект в непосредственной близости от места выработки (не переносятся током крови к другим органам). Примерами гормонов местного действия являются простагландины, кинины, гистамин, серотонин.

23.2. Иерархия регуляторных систем в организме.

23.2.1. Запомните, что в организме существует несколько уровней регуляции гомеостаза, которые тесно взаимосвязаны и функционируют как единая система (см. рисунок 23.1).

Рисунок 23.1. Иерархия регуляторных систем организма (пояснения в тексте).

23.2.2. 1. Сигналы из внешней и внутренней среды поступают в центральную нервную систему (высший уровень регуляции, осуществляет контроль в пределах целого организма). Эти сигналы трансформируются в нервные импульсы, попадающие на нейросекреторные клетки гипоталамуса. В гипоталамусе образуются:

  1. либерины (или рилизинг-факторы), стимулирующие секрецию гормонов гипофиза;
  2. статины – вещества, угнетающие секрецию этих гормонов.

Либерины и статины по системе портальных капилляров достигают гипофиза, где вырабатываются тропные гормоны. Тропные гормоны действуют на периферические ткани-мишени и стимулируют(знак “+”) образование и секрецию гормонов периферических эндокринных желёз. Гормоны периферических желёз угнетают (знак “–”) образование тропных гормонов, действуя на клетки гипофиза или нейросекреторные клетки гипоталамуса. Кроме того, гормоны, действуя на обмен веществ в тканях, вызывают изменения содержания метаболитов в крови, а те, в свою очередь, влияют (по механизму обратной связи) на секрецию гормонов в периферических железах (или непосредственно, или через гипофиз и гипоталамус).

2. Гипоталамус, гипофиз и периферические железы образуют средний уровень регуляции гомеостаза, обеспечивающий контроль нескольких метаболических путей в пределах одного органа, или ткани, или разных органов.

Гормоны эндокринных желёз могут влиять на обмен веществ:

  • путём изменения количества ферментного белка;
  • путём химической модификации ферментного белка с изменением его активности, а также
  • путём изменения скорости транспорта веществ через биологические мембраны.

3. Внутриклеточные механизмы регуляции представляют собой низший уровень регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самих клетках или поступающие в неё.

23.3. Механизмы действия гормонов.

29.3.1. Обратите внимание, что механизм действия гормонов зависит от его химической природы и свойств – растворимости в воде или жирах. По механизму действия гормоны могут быть разделены на две группы: прямого и дистантного действия.

29.3.2. Гормоны прямого действия. К этой группе относятся липофильные (растворимые в жирах) гормоны – стероиды и йодтиронины. Эти вещества мало растворимы в воде и поэтому образуют в крови комплексные соединения с белками плазмы. К этим белкам относятся как специфические транспортные протеины (например, транскортин, связывающий гормоны коры надпочечников), так и неспецифические (альбумины).

Гормоны прямого действия в силу своей липофильности способны диффундировать через двойной липидный слой мембран клеток-мишеней. Рецепторы к этим гормонам находятся в цитозоле. Образующийсякомплекс гормона с рецептором перемещается в ядро клетки, где связывается с хроматином и воздействует на ДНК. В результате изменяется скорость синтеза РНК на матрице ДНК (транскрипция) и скорость образования специфических ферментативных белков на матрице РНК (трансляция). Это приводит к изменению количества ферментативных белков в клетках-мишенях и изменению в них направленности химических реакций (см. рисунок 2).

Рисунок 23.2. Механизм влияния на клетку гормонов прямого действия.

Как вам уже известно, регуляция синтеза белка может осуществляться при помощи механизмов индукции и репрессии.

Индукция синтеза белка происходит в результате стимуляции синтеза соответствующей матричной РНК. При этом возрастает концентрация определённого белка-фермента в клетке и увеличивается скорость катализируемых им химических реакций.

Репрессия синтеза белка происходит путём подавления синтеза соответствующей матричной РНК. В результате репрессии избирательно снижается концентрация определённого белка-фермента в клетке и уменьшается скорость катализируемых им химических реакций. Имейте в виду, что один и тот же гормон может вызывать индукцию синтеза одних белков и репрессию синтеза других белков. Эффект гормонов прямого действия обычно проявляется только спустя 2 - 3 часа после проникновения в клетку.

23.3.3. Гормоны дистантного действия. К гормонам дистантного действия относятся гидрофильные (растворимые в воде) гормоны – катехоламины и гормоны белково-пептидной природы. Так как эти вещества не растворимы в липидах, они не могут проникать через клеточные мембраны. Рецепторы для этих гормонов расположены на наружной поверхности плазматической мембраны клеток-мишеней. Гормоны дистантного действия реализуют своё действие на клетку при помощи вторичного посредника, в качестве которого чаще всего выступает циклический АМФ (цАМФ).

Циклический АМФ синтезируется из АТФ под действием аденилатциклазы:

Механизм дистантного действия гормонов показан на рисунке 23.3.

Рисунок 23.3. Механизм влияния на клетку гормонов дистантного действия.

Взаимодействие гормона с его специфическим рецептором приводит к активации G-белка клеточной мембраны. G-белок связывает ГТФ и активирует аденилатциклазу.

Активная аденилатциклаза превращает АТФ в цАМФ, цАМФ активирует протеинкиназу.

Неактивная протеинкиназа представляет собой тетрамер, который состоит из двух регуляторных (R) и двух каталитических (C) субъединиц. В результате взаимодействия с цАМФ происходит диссоциация тетрамера и освобождается активный центр фермента.

Протеинкиназа фосфорилирует белки-ферменты за счёт АТФ, либо активируя их, либо инактивируя. В результате этого изменяется (в одних случаях – увеличивается, в других – уменьшается) скорость химических реакций в клетках-мишенях.

Инактивация цАМФ происходит при участии фермента фосфодиэстеразы:

23.4. Гормоны гипоталамуса и гипофиза.

Как уже упоминалось, местом непосредственного взаимодействия высших отделов центральной нервной системы и эндокринной системы является гипоталамус. Это небольшой участок переднего мозга, который расположен непосредственно над гипофизом и связан с ним при помощи системы кровеносных сосудов, образующих портальную систему.

23.4.1. Гормоны гипоталамуса. В настоящее время известно, что нейросекреторные клетки гипоталамуса продуцируют 7 либеринов (соматолиберин, кортиколиберин, тиреолиберин, люлиберин, фоллиберин, пролактолиберин, меланолиберин) и 3 статина (соматостатин, пролактостатин, меланостатин). Все эти соединения являются пептидами.

Гормоны гипоталамуса через специальную портальную систему сосудов попадают в переднюю долю гипофиза (аденогипофиз). Либерины стимулируют, а статины подавляют синтез и секрецию тропных гормонов гипофиза. Эффект либеринов и статинов на клетки гипофиза опосредуется цАМФ- и Са2+-зависимыми механизмами.

Характеристика наиболее изученных либеринов и статинов приведена в таблице 23.2.

Таблица 23.2. Гипоталамические либерины и статины
ФакторМесто действияОсновные биологические эффектыРегуляция секреции
Кортиколиберин Аденогипофиз Стимулирует секрецию адренокортикотропного гормона (АКТГ) Секреция стимулируется при стрессах и подавляется АКТГ
Тиреолиберин - “ – “ - Стимулирует секрецию тиреотропного гормона (ТТГ) и пролактина Секрецию тормозят тиреоидные гормоны
Соматолиберин - “ – “ - Стимулирует секрецию соматотропного гормона (СТГ) Секрецию стимулирует гипогликемия
Люлиберин - “ – “ - Стимулирует секрецию фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ) У мужчин секреция вызывается снижением содержания тестостерона в крови, у женщин – снижением концентрации эстрогенов. Высокая концентрация ЛГ и ФСГ в крови подавляет секрецию
Соматостатин - “ – “ - Тормозит секрецию СТГ и ТТГ Секреция вызывается физической нагрузкой. Фактор быстро инактивируется в тканях тела.
Пролактостатин - “ – “ - Тормозит секрецию пролактина Секрецию стимулирует высокая концентрация пролактина и подавляют эстрогены, тестостерон и нервные сигналы при сосании.
Меланостатин - “ – “ - Угнетает секрецию МСГ (меланоцитостимулирующего гормона) Секрецию стимулирует меланотонин

 

23.4.2. Гормоны аденогипофиза. Аденогипофиз (передняя доля гипофиза) продуцирует и выделяет в кровь ряд тропных гормонов, регулирующих функцию как эндокринных, так и неэндокринных органов. Все гормоны гипофиза являются белками или пептидами. Внутриклеточным посредником всех гипофизарных гормонов (кроме соматотропина и пролактина) служит циклический АМФ (цАМФ). Характеристика гормонов передней доли гипофиза приводится в таблице 3.

Таблица 3. Гормоны аденогипофиза
ГормонТкань-мишеньОсновные биологические эффектыРегуляция секреции
Адренокортикотропный гормон (АКТГ) Кора надпочечников Стимулирует синтез и секрецию стероидов корой надпочечников Стимулируется кортиколиберином
Тиреотропный гормон (ТТГ) Щитовидная железа Усиливает синтез и секрецию тиреоидных гормонов Стимулируется тиреолиберином и подавляется тиреоидными гормонами
Соматотропный гормон (гормон роста, СТГ) Все ткани Стимулирует синтез РНК и белка, рост тканей, транспорт глюкозы и аминокислот в клетки, липолиз Стимулируется соматолиберином, подавляется соматостатином
Фолликулостимулирующий гормон (ФСГ) Семенные канальцы у мужчин, фолликулы яичников у женщин У мужчин повышает образование спермы, у женщин – образование фолликулов Стимулируется люлиберином
Лютеинизирующий гормон (ЛГ) Интерстициальные клетки семенников (у мужчин) и яичников (у женщин) Вызывает секрецию эстрогенов, прогестерона у женщин, усиливает синтез и секрецию андрогенов у мужчин Стимулируется люлиберином
Пролактин Молочные железы (альвеолярные клетки) Стимулирует синтез белков молока и развитие молочных желёз Подавляется пролактостатином
Меланоцитостимулирующий гормон (МСГ) Пигментные клетки Повышает синтез меланина в меланоцитах (вызывает потемнение кожи) Подавляется меланостатином

23.4.3. Гормоны нейрогипофиза. К гормонам, секретируемым в кровоток задней долей гипофиза, относятся окситоцин и вазопрессин. Оба гормона синтезируются в гипоталамусе в виде белков-предшественников и перемещаются по нервным волокнам в заднюю долю гипофиза.

Окситоцин – нонапептид, вызывающий сокращения гладкой мускулатуры матки. Он используется в акушерстве для стимуляции родовой деятельности и лактации.

Вазопрессин – нонапептид, выделяемый в ответ на повышение осмотического давления крови. Клетками-мишенями для вазопрессина являются клетки почечных канальцев и гладкомышечные клетки сосудов. Действие гормона опосредовано цАМФ. Вазопрессин вызывает сужение сосудов и повышение артериального давления, а также усиливает реабсорбцию воды в почечных канальцах, что приводит к снижению диуреза.

23.4.4. Основные виды нарушений гормональной функции гипофиза и гипоталамуса. При дефиците соматотропного гормона, возникающем в детском возрасте, развивается карликовость (низкий рост). При избытке соматотропного гормона, возникающем в детском возрасте, развивается гигантизм (аномально высокий рост).

При избытке соматотропного гормона, возникающем у взрослых (в результате опухоли гипофиза), развивается акромегалия – усиленный рост кистей рук, ступней, нижней челюсти, носа.

При недостатке вазопрессина, возникающем вследствие нейротропных инфекций, черепно-мозговых травм, опухолей гипоталамуса, развивается несахарный диабет. Основным симптомом этого заболевания является полиурия – резкое увеличение диуреза при пониженной (1,001 – 1,005) относительной плотности мочи.

28.4. Гормоны поджелудочной железы.

Обратите внимание, что эндокринная часть поджелудочной железы продуцирует и выделяет в кровь гормоны инсулин и глюкагон.

1. Инсулин. Инсулин – белково-пептидный гормон, вырабатываемый β-клетками островков Лангерганса. Молекула инсулина состоит из двух полипептидных цепей (А и В), содержащих 21 и 30 аминокислотных остатков соответственно; цепи инсулина связаны между собой двумя дисульфидными мостиками. Образуется инсулин из белка-предшественника (препроинсулина) путём частичного протеолиза (см. рисунок 4). После отщепления сигнальной последовательности образуется проинсулин. В результате ферментативного превращения удаляется фрагмент полипептидной цепи, содержащий около 30 аминокислотных остатков (С-пептид), и образуется инсулин.

Стимулом для секреции инсулина является гипергликемия – повышение содержания глюкозы в крови (например, после приёма пищи). Главные мишени для инсулина – клетки печени, мышц и жировой ткани. Механизм действия – дистантный.

Рисунок 4. Схема превращения препроинсулина в инсулин.

Рецептор инсулина представляет собой сложный белок – гликопротеин, расположенный на поверхности клетки-мишени. Этот белок состоит их двух α-субъединиц и двух β-субъединиц, связанных между собой дисульфидными мостиками. β-Субъединицы содержат несколько аминокислотных остатков тирозина. Рецептор инсулина обладает тирозинкиназной активностью, т.е. способен катализировать перенос остатков фосфорной кислоты от АТФ на ОН-группу тирозина (рисунок 5).

Рисунок 5. Инсулиновый рецептор.

В отсутствие инсулина рецептор не проявляет ферментативной активности. При связывании с инсулином рецептор подвергается аутофосфорилированию, т.е. β-субъединицы фосфорилируют друг друга. В результате изменяется конформация рецептора и он приобретает способность фосфорилировать другие внутриклеточные белки. В дальнейшем комплекс инсулина с рецептором погружается в цитоплазму и его компоненты расщепляются в лизосомах.

Образование гормон-рецепторного комплекса повышает проницаемость клеточных мембран для глюкозы и аминокислот. Под действием инсулина в клетках-мишенях:

а) снижается активность аденилатциклазы и увеличивается активность фосфодиэстеразы, что приводит к понижению концентрации цАМФ;

б) повышается скорость окисления глюкозы и снижается скорость глюконеогенеза;

в) увеличивается синтез гликогена и жиров и подавляется их мобилизация;

г) ускоряется синтез белка и тормозится его распад.

Все эти изменения направлены на ускоренное использование глюкозы, что приводит к снижению содержания глюкозы в крови. Инактивация инсулина происходит главным образом в печени и заключается в разрыве дисульфидных связей между цепями А и В.

2. Глюкагон. Глюкагон – полипептид, содержащий 29 аминокислотных остатков. Он продуцируется α-клетками островков Лангерганса в виде белка-предшественнника (проглюкагона). Частичный протеолиз прогормона и секреция глюкагона в кровь происходит при гипогликемии, вызванной голоданием.

Клетки-мишени для глюкагона – печень, жировая ткань, миокард. Механизм действия – дистантный (посредником является цАМФ).

Под действием глюкагона в клетках-мишенях:

а) ускоряется мобилизация гликогена в печени (см. рисунок 6) и тормозится его синтез;

б) ускоряется мобилизация жиров (липолиз) в жировой ткани и тормозится их синтез;

в) угнетается синтез белка и усиливается его катаболизм;

г) ускоряется глюконеогенез и кетогенез в печени.

Конечный эффект глюкагона – поддержание высокого уровня глюкозы в крови.

Рисунок 6. Каскадный механизм активации фосфорилазы гликогена под влиянием глюкагона.

3. Нарушения гормональной функции поджелудочной железы. Наиболее часто встречается сахарный диабет – заболевание, обусловленное нарушением синтеза и секреции инсулина β-клетками (диабет I типа) либо дефицитом инсулинчувствительных рецепторов в клетках-мишенях (диабет II типа). Для сахарного диабета характерны следующие нарушения обмена веществ:

а) снижение использования глюкозы клетками, усиление мобилизации гликогена и активация глюконеогенеза в печени приводят к увеличению содержания глюкозы в крови (гипергликемия) и преодоление ею почечного порога (глюкозурия);

б) ускорение липолиза (расщепления жиров), избыточное образование ацетил-КоА, используемого для синтеза с последующим поступлением в кровь холестерола (гиперхолестеролемия) и кетоновых тел (гиперкетонемия); кетоновые тела легко проникают в мочу (кетонурия);

в) снижение скорости синтеза белка и усиление катаболизма аминокислот в тканях приводит к повышению концентрации мочевины и других азотистых веществ в крови (азотемия) и увеличению их выведения с мочой (азотурия);

г) выведение почками больших количеств глюкозы, кетоновых тел и мочевины сопровождается увеличением диуреза (полиурия).

28.5. Гормоны мозгового вещества надпочечников.

К гормонам мозгового вещества надпочечников относятся адреналин и норадреналин (катехоламины). Они синтезируются в хромаффинных клетках из тирозина (рисунок 7).

Рисунок 7. Схема синтеза катехоламинов.

Секреция адреналина усиливается при стрессе, физических нагрузках. Мишени для катехоламинов – клетки печени, мышечной и жировой ткани, сердечно-сосудистая система. Механизм действия – дистантный. Эффекты реализуются через аденилатциклазную систему и проявляются изменениями углеводного обмена. Подобно глюкагону, адреналин вызывает активацию мобилизации гликогена (см. рисунок 6) в мышцах и печени, липолиз в жировой ткани. Это приводит к увеличению содержания глюкозы, лактата и жирных кислот в крови. Адреналин усиливает также сердечную деятельность, вызывает сужение сосудов.

Обезвреживание адреналина происходит в печени. Основными путями обезвреживания являются: метилирование (фермент – катехол-орто-метилтрансфераза, КОМТ), окислительное дезаминирование (фермент – моноаминооксидаза, МАО) и конъюгация с глюкуроновой кислотой. Продукты обезвреживания выводятся с мочой.


ПРЕДМЕТЫ

О НАС

«Dendrit» - портал для студентов медицинских ВУЗов, включающий в себя собрание актуальных учебных материалов (учебники, лекции, методические пособия, фотографии анатомических и гистологических препаратов), которые постоянно обновляются по ходу учебного процесса в ЯГМУ.