ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

Общие свойства и функции крови.

      Кровь и лимфу принято называть внутренней средой организма, так как они окружают все клетки и ткани, обеспечивая их жизнедеятельность.В отношении своего происхождения кровь, как и другие жидкости организма, может рассматриваться как морская вода, окружавшая простейшие организмы, замкнутая внутрь и претерпевшая в дальнейшем определенные изменения и усложнения.

     Кровь состоит из плазмы и находящихся в ней во взвешенном состоянии форменных элементов (клеток крови). У человека форменные элементы составляют 42,5+-5% для женщин и 47,5+-7% для мужчин. Эта величина называется гематокритный показатель. Циркулирующая в сосудах кровь, органы, в которых происходит образование и разрушение ее клеток, также системы их регуляции объединяются понятием "система крови".

      Все форменные элементы крови являются продуктами жизнедеятельности не самой крови, а кроветворных тканей (органов) - красного костного мозг, лимфатических узлов, селезенки. Кинетика составных частей крови включает следующие этапы: образование, размножение, дифференциация, созревание, циркуляция, старение, разрушение. Таким образом, существует неразрывная связь форменных элементов крови с вырабатывающими и разрушающими их органами, а клеточный состав периферической крови отражает в первую очередь состояние органов кроветворения и кроверазрушения.

     Кровь, как ткань внутренней среды, обладает следующими особенности: составные ее части образуются вне ее, межуточное вещество ткани является жидким, основная масса крови находится в постоянном движении, осуществляя гуморальные связи в организме.

      При общей тенденции к сохранению постоянства своего морфологического и химического состава, кровь является в то же время одним из наиболее чувствительных индикаторов изменений, происходящих в организме под влиянием как различных физиологических состояний, так и патологических процессов. "Кровь - зеркало организма!"

                 Основные физиологические функции крови.

      Значение крови как важнейшей части внутренней среды организма многообразно. Можно выделить следующие основные группы функций крови:

     1.Транспортные функции. Эти функции состоят в переносе необходимых для жизнедеятельности веществ (газов, питательных веществ, метаболитов, гормонов, ферментов и т.п.) Транспортируемые вещества могут оставаться в крови неизмененными, или вступать в те или иные, большей частью, нестойкие, соединения с белками, гемоглобином, другими компонентами и транспортироваться в таком состоянии. В число транспортных входят такие функции, как:

      а) дыхательная, заключающаяся в транспорте кислорода из легких к тканям и углекислоты от тканей к легким;

      б) питательная, заключающаяся в переносе питательных веществ от органов пищеварения к тканям, а также в переносе их из депо и в депо в зависимости от потребности в данный момент;

      в) выделительная (экскреторная), которая заключается в переносе ненужных продуктов обмена веществ (метаболитов), а также излишних солей, кислых радикалов и воды к местам их выделения из организма;

      г) регуляторная, связанная с тем, что кровь является средой, с помощью которой осуществляется химическое взаимодействие отдельных частей организма между собой посредством вырабатываемых тканями или органами гормонов и других биологически активных веществ.

     2. Защитные функции крови связаны с тем, что клетки крови осуществляют защиту организма от инфекционно-токсической агрессии. Можно выделить следующие защитные функции:

     а) фагоцитарная - лейкоциты крови способны пожирать (фагоцитировать) чужие клетки и инородные тела, попавшие в организм;

     б) иммунная - кровь является местом, где находятся различного рода антитела, образующиеся в лимфоцитами в ответ на поступление микроорганизмов, вирусов, токсинов и обеспечивающие приобретенный и врожденный иммунитет.

     в) гемостатическая (гемостаз - остановка кровотечения), заключающаяся в способности крови свертываться в месте ранения кровеносного сосуда и тем самым  предотвращать смертельное кровотечение.

     3. Гомеостатические функции. Заключаются в участии крови и находящихся в ее составе веществ и клеток в поддержании относительного постоянства ряда констант организма. Сюда относятся:

     а) поддержание рН;

     б) поддержание осмотического давления;

     в) поддержание температуры внутренней среды.

     Правда, последняя функция может быть отнесена и к транспортным, так как тепло разносится циркулирующей кровью по телу от места его образования к периферии и наоборот.

 

              Количество крови в организме. Объем циркулирующей крови (ОЦК) .

 

     В настоящее время имеются точные методы для определения общего количества крови в организме. Принцип этих методов заключается в том, что в кровь вводят известное количество вещества, а затем через определенные интервалы времени берутся пробы крови и в них определяется содержание введенного продукта. По степени полученного разбавления высчитывается объем плазмы. После этого кровь центрифугируют в капиллярной градуированной пипетке (гематокрите) для определения гематокритного показателя, т.е. соотношения форменных элементов и плазмы. Зная гематокритный показатель, легко определить и объем крови. В качестве индикаторов применяют нетоксичные медленно выводящиеся соединения, не проникающие через сосудистую стенку в ткани (красители, поливинилпиролидон, железодекстрановый комплекс и др.) В последнее время для этой цели широко используются радиоактивные изотопы.

     Определения показывают, что в сосудах человека весом 70 кг. содержится примерно 5 литров крови, что составляет 7% массы тела ( у мужчин 61,5+-8,6 мл/кг, у женщин - 58,9+-4,9 мл/кг массы тела).

     Введение в кровь жидкости увеличивает на короткое время ее объем. Потери жидкости - уменьшают объем крови. Однако изменения общего количества циркулирующей крови, как правило, невелики, вследствие наличия процессов, регулирующих общий объем жидкости в кровеносном русле. Регуляция объема крови основана на поддержании равновесия между жидкостью в сосудах и тканях. Потери жидкости из сосудов быстро восполняются за счет поступления ее из тканей и наоборот. Более подробно о механизмах регуляции количества крови в организме мы будем говорить позднее.

 

                       Физико-химические свойства крови

                        1. Состав плазмы крови.

     Плазма представляет собою желтоватого цвета слегка опалесцирующую жидкость, и является весьма сложной биологической средой, в состав которой входят белки, различные соли, углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и растворенные газы. В нее входят как органические, так и неорганические вещества (до 9%) и вода (91-92%). Плазма крови находится в тесной связи с тканевыми жидкостями организма. Из тканей в кровь поступает большое количество продуктов обмена, но, благодаря сложной деятельности различных физиологических систем организма, в составе плазмы в норме не происходит существенных изменений.

     Количеств белков, глюкозы, всех катионов и бикарбоната удерживается на постоянном уровне и самые незначительные колебания в их составе приводят к тяжелым нарушениям в нормальной деятельности организма. В то же время содержание таких веществ, как липиды, фосфор, мочевина, может меняться в значительных пределах, не вызывая заметных расстройств в организме. Весьма точно регулируется в крови концентрация солей и водородных ионов.

      Состав плазмы крови имеет некоторые колебания в зависимости от возраста, пола, питания,  географических  особенностей  места  проживания, времени  и  сезона года.

        Белки плазмы крови и их функции. Общее содержание белков крови составляет 6,5-8,5%, в среднем -7,5%. Они различны по составу и количеству входящих в них аминокислот, растворимости, устойчивости в растворе при изменениях рН, температуры, солености, по электрофоретической плотности. Роль белков плазмы весьма многообразна: они принимают участие в регуляции водного обмена, в защите организма от иммуннотоксических воздействий, в транспорте продуктов обмена, гормонов, витаминов, в свертывании крови, питании организма. Обмен их происходит быстро, постоянство концентрации осуществляется путем непрерывного синтеза и распада.

     Наиболее полное разделение белков плазмы крови осуществляется с помощью электрофореза. На электрофореграмме можно выделить 6 фракций белков плазмы:

      Альбумины. Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени. Молекулярный вес их 70-100 тыс., поэтому часть их может походить через почечный барьер и обратно всасываться в кровь.

    Глобулины обычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

          альфа1-глобулины - 0,22-0,55 г% (4-5%)

          альфа2-глобулины - 0,41-0,71г% (7-8%)

         бета-глобулины     - 0,51-0,90 г% (9-10%)

         гамма-глобулины   - 0,81-1,75 г% (14-15%)

   Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть - в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

           Фибриноген. Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации. Плазма, лишенная фибриногена (фибрина), носит название кровяной сыворотки.

         При различных заболеваниях, особенно приводящих к нарушениям белкового обмена, наблюдаются резкие изменения в содержании и фракционном составе белков плазмы. Поэтому анализ белков плазмы крови имеет диагностическое и прогностическое значение и помогает врачу судить о степени повреждения органов.

         Небелковые азотистые вещества плазмы представлены аминокислотами (4-10 мг%), мочевиной (20-40 мг%), мочевой кислотой, креатином, креатинином, индиканом и др. Все эти продукты белкового обмена в сумме называются остаточным, или небелковым азотом. Содержание остаточного азота плазмы в норме колеблется от 30 до 40 мг. Среди аминокислот одна треть приходится на долю глютамина, который переносит в крови свободный аммиак. Увеличение количества остаточного азота наблюдается главным образом при почечной патологии. Количество небелкового азота в плазме крови мужчин выше, чем в плазме крови женщин.

       Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%.

       Минеральные вещества плазмы - это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, H2PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%. Количество катионов превышает количество анионов. Наибольшее значение имеют следующие минеральные вещества:

       Натрий и калий. Количество натрия в плазме составляет 300-350 мг%, калия - 15-25 мг%. Натрий находится в плазме в виде хлористого натрия, бикарбонатов, а также в связанном с белками виде. Калий тоже. Ионы эти играют важную роль в поддержании кислотно-щелочного равновесия и осмотического давления крови.

       Кальций. Общее его количество в плазме составляет 8-11 мг%. Он находится там или в связанном с белками виде, или в виде ионов. Ионы Са+ выполняют важную функцию в процессах свертывания крови, сократимости и возбудимости. Поддержание нормального уровня кальция в крови происходит при участии гормона паращитовидных желез, натрия - при участии гормонов надпочечников.

         Кроме перечисленных выше минеральных веществ в плазме содержатся магний, хлориды, йод, бром, железо, и ряд микроэлементов, таких как медь, кобальт, марганец, цинк, и др., имеющие большое значение для эритропоэза, ферментативных процессов и т.п.

 

        Физико-химические свойства крови

             1.Реакция крови. Активная реакция крови определяется концентрацией в ней водородных и гидроксильных ионов. В норме кровь имеет слабощелочную реакцию (рН 7,36-7,45, в среднем 7,4+-0,05). Реакция крови является величиной постоянной. Это - обязательное условие нормального течения жизненных процессов. Изменение рН на 0,3-0,4 единицы приводит к тяжелым для организма последствиям. Границы жизни находятся в пределах рН крови 7,0-7,8. Организм удерживает величину рН крови на постоянном уровне благодаря деятельности специальной функциональной системы, в которой главное место уделяется имеющимся в самой крови химическим веществам, которые, нейтрализуя значительную часть поступающих в кровь кислот и щелочей, препятствуют сдвигам рН в кислую или щелочную сторону. Сдвиг рН в кислую сторону называется ацидоз, в щелочную - алкалоз.

     К веществам, постоянно поступающим в кровь и могущим изменить величину рН, относятся молочная кислота, угольная кислота и другие продукты обмена, вещества, поступающие с пищей и др.

     В крови имеются четыре буферные системы - бикарбонатная (углекислота/бикарбонаты), гемоглобиновая (гемоглобин / оксигемоглобин), белковая (кислые белки / щелочные белки) и фосфатная (первичный фосфат / вторичный фосфат).Подробно их работа изучается в курсе физической и коллоидной химии.

      Все буферные системы крови, взятые вместе, создают в крови так называемый щелочной резерв, способный связывать кислые продукты, поступающие в кровь. Щелочной резерв плазмы крови в здоровом организме более или менее постоянен. Он может быть снижен при избыточном поступлении или образовании кислот в организме (например, при интенсивной мышечной работе, когда образуется много молочной и угольной кислот). Если это снижение щелочного резерва не привело еще к реальным изменениям рН крови, то такое состояние называют компенсированным ацидозом. При некомпенсированном ацидозе щелочной резерв расходуется полностью, что ведет к снижению рН (например, так бывает при диабетической коме).

       Когда ацидоз связан с поступлением в кровь кислых метаболитов или других продуктов, он носит название метаболического или не газового. Когда же ацидоз возникает при накоплении в организме преимущественно углекислоты - он называется газовым. При избыточном поступлении в кровь продуктов обмена щелочного характера (чаще с пищей, так как продукты обмена в основном кислые) то щелочной резерв плазмы увеличивается (компенсированный алкалоз). Он может увеличиваться, например,  при усиленной гипервентиляции легких, когда имеет место избыточное удаление углекислоты из организма (газовый алкалоз). Некомпенсированный алкалоз бывает чрезвычайно редко.

       Функциональная система поддержания рН крови (ФСрН) включает в себя целый ряд анатомически неоднородных органов, в комплексе позволяющих достигнуть очень важного для организма полезного результата - обеспечения постоянства рН крови и тканей. Появление кислых метаболитов или щелочных веществ крови сразу же нейтрализуется соответствующими буферными системами и одновременно от специфических хеморецепторов, заложенных как в стенках кровеносных сосудов, так и в тканях, в ЦНС поступают сигналы о возникновении сдвига в реакциях крови (если таковой действительно произошел). В промежуточном и продолговатом отделах мозга находятся центры, регулирующие постоянство реакции крови. Оттуда по афферентным нервам и по гуморальным каналам команды поступают к исполнительным органам, способным исправить нарушение гомеостаза. К числу таких органов относятся все органы выделения (почки, кожа, легкие), которые выбрасывают из организма как сами кислые продукты, так и продукты их реакций с буферными системами. Кроме того, в деятельности ФСрН принимают участие органы ЖКТ, которые могут быть как местом выделения кислых продуктов, так и местом, откуда всасываются необходимые для их нейтрализации вещества. Наконец, к числу исполнительных органов ФСрН относится и печень, где происходит дезинтоксикация потенциально вредных продуктов, как кислых так и щелочных. Надо отметить, что кроме этих внутренних органов, в ФСрН есть и внешнее звено - поведенческое, когда человек целенаправленно ищет во внешней среде вещества, которых ему не хватает для поддержания гомеостаза ("Кисленького хочется!"). Схема этой ФС представлена на схеме.     

       2. Удельный вес крови (УВ). УВ крови зависит в основном от числа эритроцитов, содержащегося в них гемоглобина и белкового состава плазмы. У мужчин он равен 1,057, у женщин - 1,053, что объясняется различным содержанием эритроцитов. Суточные колебания не превышают 0.003. Увеличение УВ закономерно наблюдается после физического напряжения и в условиях воздействия высоких температур, что свидетельствует о некотором сгущении крови. Понижение УВ после кровепотери связано с большим притоком жидкости из тканей. Наиболее распространенный метод определения - медно-сульфатный, принцип которого заключается в помещении капли крови в ряд пробирок с растворами сульфата меди известного удельного веса. В зависимости от УВ крови капля тонет, всплывает или плавает в том месте пробирки, где ее поместили.

          3. Осмотические свойства крови. Осмосом называется проникновение молекул растворителя в раствор через разделяющую их полупроницаемую перепонку, через которую не проходят растворенные вещества. Осмос совершается и в том случае, если такая перегородка разделяет растворы с разной концентрацией. При этом растворитель перемещается через мембрану в сторону раствора с большей концентрацией до тех пор, пока эти концентрации не сравняются. Мерой осмотических сил является осмотическое давление (ОД). Оно равно такому гидростатическому давлению, который над приложить к раствору чтобы прекратить в него проникновение молекул растворителя. Величина эта определяется не химической природой вещества, а числом растворенных частиц. Она прямо пропорциональна молярной концентрации вещества. Одно- молярный раствор имеет ОД 22,4 атм., так как осмотическое давление определяется давлением, которое может оказывать в равном объеме растворенное вещество в виде газа (1гМ газа занимает объем 22,4 л. Если это количество газа поместить в сосуд объемом 1л, он будет давить на стенки с силой 22,4 атм.).

       Осмотическое давление следует рассматривать не как свойство растворенного вещества, растворителя или раствора, а как свойство системы, состоящей из раствора, растворенного вещества и разделяющей их полупроницаемой перепонки.

     Кровь как раз является такой системой. Роль полупроницаемой перегородки в этой системе играют оболочки клеток крови и стенки кровеносных сосудов, растворителем служит вода, в которой находятся минеральные и органические вещества в растворенном виде. Эти вещества создают в крови среднюю молярную концентрацию около 0,3 гМ, и поэтому развивают осмотическое давление, равное для крови человека 7,7 - 8,1 атм. Почти 60% этого давления приходится на долю поваренной соли (NaCl).

Величина осмотического давления крови имеет важнейшее физиологическое значение, так как в гипертонической среде вода выходит из клеток (плазмолиз), а в гипотонической - наоборот, входит в клетки, раздувает их и даже может разрушить (гемолиз).

       Правда, гемолиз может наступать не только при нарушении осмотического равновесия, но и под действием химических веществ - гемолизинов. К ним относятся сапонины, желчные кислоты, кислоты и щелочи, аммиак, спирты, змеиный яд, бактериальные токсины и др.

      Величина осмотического давления крови определяется криоскопическим методом, т.е. по точке замерзания крови. У человека температура замерзания плазмы равна -0,56-0,58оС. Осмотическое давление крови человека соответствует давлению 94% NaCl, такой раствор носит название физиологического.

     В клинике, когда возникает необходимость введения в кровь жидкости, например, при обезвоживании организма, или при внутривенном введении лекарств обычно применяют этот раствор, который изотоничен плазме крови. Однако, хотя его и называют физиологическим, он таковым в строгом смысле не является, так как в нем отсутствуют остальные минеральные и органические вещества. Более физиологическими растворами являются такие, как раствор Рингера, Рингер-Локка, Тироде, Крепс-Рингера и т.п. Они приближаются к плазме крови по ионному составу (изоионичны). В ряде случаев, особенно для замены плазмы при кровепотере, применяются жидкости кровезаменители, приближающиеся к плазме не только по минеральному, но и по белковому, крупномолекулярному составу.

      Дело в том, что белки крови играют большую роль в правильном водном обмене между тканями и плазмой. Осмотическое давление белков крови называется онкотическим давлением. Оно равно примерно 28 мм.рт.ст. т.е. составляет менее 1/200 общего осмотического давления плазмы. Но так как капиллярная стенка очень мало проницаема для белков и легко проходима для воды и кристаллоидов, то именно онкотическое давление белков является наиболее эффективным фактором, удерживающим воду в кровеносных сосудах. Поэтому уменьшение количества белков в плазме приводит к появлению отеков, к выходу воды из сосудов в ткани. Из белков крови наибольшее онкотическое давление развивают альбумины.

         Функциональная система регуляции осмотического давления. Осмотическое давление крови млекопитающих и человека в норме держится на относительно постоянном уровне (опыт Гамбургера с введением в кровь лошади 7 л 5% раствора сернокислого натрия). Все это происходит за счет деятельности функциональной системы регуляции осмотического давления, которая тесно увязана с функциональной системой регуляции водно-солевого гомеостаза, так как использует те же исполнительные органы.

        В стенках кровеносных сосудов имеются нервные окончания, реагирующие на изменения осмотического давления (осморецепторы). Раздражение их вызывает возбуждение центральных регуляторных образований в продолговатом и промежуточном мозге. Оттуда идут команды, включающие те или иные органы, например, почки, которые удаляют избыток воды или солей. Из других исполнительных органов ФСОД надо назвать органы пищеварительного тракта, в которых происходит как выведение избытка солей и воды, так и всасывание необходимых для восстановления ОД продуктов; кожу, соединительная ткань которой вбирает в себя при понижении осмотического давления избыток воды или отдает ее последней при повышении осмотического давления. В кишечнике растворы минеральных веществ всасываются только в таких концентрациях, которые способствуют установлению нормального осмотического давления и ионного состава крови. Поэтому при приеме гипертонических растворов (английская соль, морская вода) происходит обезвоживание организма за счет выведения воды в просвет кишечника. На этом основано слабительное действие солей.

       Фактором, способным изменять осмотическое давление тканей, а также крови, является обмен веществ, ибо клетки тела потребляют крупномолекулярные питательные вещества, и выделяют взамен значительно большее число молекул низкомолекулярных продуктов своего обмена. Отсюда понятно, почему венозная кровь, оттекающая от печени, почек, мышц имеет большее осмотическое давление, чем артериальная. Не случайно, что в этих органах находится наибольшее количество осморецепторов.

      Особенно значительные сдвиги осмотического давления в целом организме вызывает мышечная работа. При очень интенсивной работе деятельность выделительных органов может оказаться недостаточной для сохранения осмотического давления крови на постоянном уровне и в итоге может наступить его увеличение. Сдвиг осмотического давления крови до 1,155% NaCl делает невозможным дальнейшее выполнение работы (один из компонентов утомления).        

       4. Суспензионные свойства крови. Кровь является устойчивой суспензией мелких клеток в жидкости (плазме), Свойство крови как устойчивой суспензии нарушается при переходе крови к статическому состоянию, что сопровождается оседанием клеток и наиболее отчетливо проявляется со стороны эритроцитов. Отмеченный феномен используется для оценки суспензионной стабильности крови при определении скорости оседания эритроцитов (СОЭ).

       Если предохранить кровь от свертывания, то форменные элементы можно отделить от плазмы простым отстаиванием. Это имеет практическое клиническое значение, так как СОЭ заметно меняется при некоторых состояниях и болезнях. Так, СОЭ сильно ускоряется у женщин при беременности, у больных туберкулезом, при воспалительных заболеваниях. При стоянии крови эритроциты склеиваются друг с другом (агглютинируют), образуя так называемые монетные столбики, а затем и конгломераты монетных столбиков (агрегация), которые оседают тем быстрее, чем больше их величина.

        Агрегация эритроцитов, их склеивание зависит от изменения физических свойств поверхности эритроцитов (возможно, с изменением знака суммарного заряда клетки с отрицательного на положительный), а также от характера взаимодействия эритроцитов с белками плазмы. Суспензионные свойства крови зависят преимущественно от белкового состава плазмы: увеличение содержания грубодисперсных белков при воспалении сопровождается снижением суспензионной устойчивости и ускорением СОЭ. Величина СОЭ зависит и от количественного соотношения плазмы и эритроцитов. У новорожденных СОЭ равна 1-2 мм/час, у мужчин 4-8 мм/час, у женщин 6-10 мм/час. Определяют СОЭ по методу Панченкова (см. практикум).

        Ускоренной СОЭ, обусловленной изменением белков плазмы особенно при воспалении, соответствует и повышенная агрегация эритроцитов в капиллярах. Преимущественная агрегация эритроцитов в капиллярах связана с физиологическим замедлением тока крови в них. Доказано, что в условиях замедленного кровотока увеличение содержания в крови грубодисперсных белков приводит к более выраженной агрегации клеток. Агрегация эритроцитов, отражая динамичность суспензионных свойств крови, является одним из древнейших защитных механизмов. У беспозвоночных агрегация эритроцитов играет ведущую роль в процессах гемостаза; при воспалительной реакции это приводит к развитию стаза (остановки кровотока в пограничных областях), способствуя отграничению очага воспаления.

       В последнее время доказано, что в СОЭ имеет значение не столько заряд эритроцитов, сколько характер его взаимодействия с гидрофобными комплексами белковой молекулы. Теория нейтрализации заряда эритроцитов белками не доказана.     

      5. Вязкость крови (реологические свойства крови). Вязкость крови, определяемая вне организма, превышает вязкость воды в 3-5 раз и зависит преимущественно от содержания эритроцитов и белков. Влияние белков определяется особенностями структуры их молекул: фибриллярные белки повышают вязкость в значительно большей степени, чем глобулярные. Выраженный эффект фибриногена связан не только с высокой внутренней вязкостью, но обусловлен и вызываемой им агрегацией эритроцитов. В физиологических условиях вязкость крови in vitro нарастает (до 70%) после напряженной физической работы и является следствием изменения коллоидных свойств крови.

       In vivo вязкость крови характеризуется значительной динамичностью и меняется в зависимости от длины и диаметра сосуда и скорости кровотока. В отличие от однородных жидкостей, вязкость которых нарастает с уменьшением диаметра капилляра, со стороны крови отмечается обратное: в капиллярах вязкость уменьшается. Это связано с неоднородностью структуры крови, как жидкости, и изменением характера протекания клеток по сосудам разного диаметра. Так, эффективная вязкость, измеренная особыми динамическими вискозиметрами, такова: аорта - 4,3; малая артерия - 3,4; артериолы - 1,8; капилляры - 1; венулы - 10; малые вены - 8; вены 6,4. Показано, что если бы вязкость крови была бы постоянной величиной, то сердцу пришлось бы развивать в 30-40 раз большую мощность, чтобы протолкнуть кровь через сосудистую систему, так как вязкость участвует в формировании периферического сопротивления.

        Снижение свертываемости крови в условиях введения гепарина сопровождается понижением вязкости и одновременно ускорением скорости кровотока. Показано, что вязкость крови всегда снижается при анемиях, повышается при полицитемиях, лейкемии, некоторых отравлениях. Кислород понижает вязкость крови, поэтому венозная кровь более вязкая, чем артериальная. При повышении температуры вязкость крови понижается. 

ОБНОВЛЕНИЯ

ПОДПИСАТЬСЯ НА РАССЫЛКУ

Подписаться

ПРЕДМЕТЫ

О НАС

«Dendrit» - информационный портал для медицинских работников, студентов медицинских ВУЗов, исследователей и пациентов.

Ваш источник новостей и знаний о здоровье.